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1 Before reading

1.1 Prerequisites

This material intends to serve as a background source for advanced thermodynamics
courses at BME. Accordingly, it is assumed that the Reader understands and can
recall/reproduce

• the surface area and volume of a sphere in terms of its radius,

• a2 − b2 = (a− b)(a+ b), a4 − b4 = (a− b)(a+ b)(a2 + b2),

• a3 − b3 = (a− b)(a2 + ab+ b2), a3 + b3 = (a+ b)(a2 − ab+ b2),

• x2+px+q = 0 =⇒ x± = −p
2 ±
√
(p2 )

2 − q, x2+px+q = (x−x+)(x−x−),

• exp(a ln b) = eab,

• det
(
1 2
3 4

)
= −2,

• e−x ≈ 1− x, sinx ≈ x (|x| ≪ 1), sin 180 = −0.8011526,

• d
(

1
x2

)/
dx = − 2

x3 , d
(
ln x

c

)/
dx = 1

x , d
(
ln c

x

)/
dx = − 1

x , ∂euv

∂u

∣∣
v
= veuv,

• (fg)′ = f ′g + fg′,
(
f
g

)′
= f ′g−fg′

g2 , df(g(x))
dx = f ′ (g(x)) · g′(x),

• ∂f(x(u),y)
∂u

∣∣
y
= ∂f

∂x

∣∣
y
· dx
du , df(x(u),y(u))

du = ∂f
∂x

∣∣
y
· dx
du + ∂f

∂y

∣∣
x
· dy
du ,

• ∂2f
∂x∂y = ∂2f

∂y∂x ,

•
´

dx
x3 = − 1

2x2 + C,
´

dx
x = ln|x|+ C and

´ b

a
dx
x = ln b

a

(
why is

∣∣ b
a

∣∣ not needed?
)
,

• that the solution of dy/dx = −3y(x) with y(0) = 4 is y(x) = 4e−3x,

• how to treat 3× 3 matrices, and how three-dimensional Euclidean vectors,

• what Greek letters are used in science and engineering and how to write them,

• what an ideal gas is,

• what isothermal and adiabatic processes are,

• what heat and work are, and what the specific heat capacities cv and cp are,

• what a Carnot cycle is and what its properties are,

• that mass, volume, and internal energy are extensive state quantities,

• that temperature and pressure are intensive state quantities.

https://www.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering#Typography
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1.2 Suggested literature on thermodynamics

Standard: Callen: Thermodynamics and an introduction to thermostatistics
Kondepudi – Prigogine: Modern thermodynamics
Gyftopoulos – Beretta: Thermodynamics: foundations and applications
Környey: Termodinamika (in Hungarian)
Harmatha: Termodinamika műszakiaknak (in Hungarian)

Temporal: Matolcsi: Ordinary thermodynamics
("Matolcsi_Ordinary_Thermodynamics_2017-04-26.pdf"
open-access version available on the internet)

Matolcsi: Közönséges termodinamika (in Hungarian)

Continuum: De Groot – Mazur: Non-equilibrium thermodynamics
Verhás: Thermodynamics and rheology

("Verhas_Thermodynamics_and_Rheology_2017-05-17.pdf"
open-access version available on the internet)

1.3 On notations

Equations are numbered in the form (pagenumber.whichequationonthatpage), like

(15.2). Figures and tables are numbered analogously. A
(15.2)

= B means that (15.2)

can be used to find A = B. Similarly,
○3

∂e
∂v

∣∣
T

indicates that identity ○3 has been
utilized to obtain ∂e

∂v

∣∣
T
.

In better pdf viewers, if you move the mouse pointer over an equation number,
section number, figure number etc., a floating window will show that equation/etc.
In parallel, if you click on the number, you can jump there. You can then return by
a ‘Go back’-like menu item / icon / hot key. Alternatively, you can view this pdf in
two windows.
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2 Four types of thermodynamical modelling

2.1 On modelling in general

Before speaking about modelling in thermodynamics, it is worth speaking about
modelling in general. Furthermore, before modelling in general, it is worth speaking
about theories in general.

Theories have three benefits:

• power to explain,
• power to predict, and
• power to motivate action.

The first is not only for science but is a general need of humans in their everyday
life. The world around us is infinitely complicated, and if we have an explanation for
something that happened then – even if the explanation comes too late to change
anything – somehow the soul gets relieved. Therefore, this first benefit is, to large
extent, emotional. An explanation may give only the illusion of rationality.

The second benefit is much more the field for a scientist. Actually, a ‘good’ scientist
stops here, and is satisfied if the theoretical prediction is fulfilled.

The third benefit is the point where the engineer gets most excited. It’s nice if a
theory works – now let us make some use of it, let us use it for creating something
new that is useful for the society. “Scientists study the world as it is; engineers create
the world that never has been.” (Theodore von Kármán)

For illustration, we can consider the example of electromagnetic waves. Maxwell,
based partly on a cogwheel-like picture in mind and to make the then-known electro-
magnetic equations consistent with the conservation with electric charge, suggested
a new term in one of the electromagnetic equations. This led him to predict electro-
magnetic waves, and to explain light as a special case. At this level, this theory had
only the first benefit guaranteed (explanation of light). The second one was realized
when Hertz experimentally confirmed the existence of the predicted electromagnetic
waves. This has triggered vivid activity worldwide on constructing systems that can
transmit signals via this new type of wave (leading to the radio, the television, and
the whole area of telecommunication), as an example for the third benefit.

Now, any theory is a model. In fact, all our thoughts are models, created by our brain,
they are rude approximations of certain parts/aspects of the terribly complicated
universe. Even when we speak or write about experiments and natural phenomena,
all that is also just a bunch of models of the brain.

All models are severely simplifying approximations of reality.1 Although theories of
1According to sayings, physics studies horses/cows/chickens of spherical shape in vacuum.
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physics get gradually generalized and unified, we can never reach a level of ‘perfect
description’.

In parallel, already the existing level of physical theories poses very tough problem if
we want to calculate how a certain concrete setting behaves.2 Solving the equations
is very demanding so not only the theory but also its application means a massive
compromise: we have to apply various further simplifications and approximations to
reach a result with acceptable effort.

Fortunately, many problems of engineering we have to solve include a level of toler-
ance and robustness. Answers are needed only to some finite precision – sometimes
even the questions are specified up to an amount of tolerance. It also happens
frequently that the sources we can use for obtaining the solution are imperatively
limited and we must accept the type of result that is allowed by these constraints.

We also have to bear in mind that when we devotedly and perseveringly increase the
amount of invested effort, the impact on the outcome will gradually get more and
more minute. We will need a cost–benefit consideration.

In science and engineering, the language of models is mathematics. This means much
more than using mathematical formulae here or there. It is also a typical mistake
to use a mathematical theorem/rule without ensuring that the conditions required
for its validity hold in our case. When those conditions are violated then expect
surprises – physical/engineering ones.

Actually, the methodologically proper way of modelling is when all our notions are
given a precise mathematical meaning. In practice this means that any notion must
be characterized by a set, an element of a set or a function (mapping from a set
to a set). Experience shows that, whenever we are not able to give a notion a
precise mathematical meaning, we actually do not understand that notion in the
physical/engineering sense.

This level of modelling is not easy to achieve and practice. We, in the present lecture
notes material, won’t fully follow it, either. Nevertheless, warnings will be issued at
important places. Moreover, since the birth of computer programs with the capability
for analytical calculations and manipulations, there is a – directly practical – version
of the preciseness criterion. Namely, we should be able to realize the model in such
software. If we are not able to do this then we actually don’t know what we want.
(Since these softwares have limitations, we have to accept compromises, but the level
of preciseness is quite well indicated via this latter criterion version.)

The final comment related to the general level is that, at university, one has to learn
three levels of thinking. The first is the level of recipes. One learns that ‘in this and
this situation do this and this’. The second level is that of examples/analogies. At

2Present physical (quantum field theoretical) knowledge says that even a point mass possesses
infinitely many degrees of freedom.
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that level there is no single recipe given but a variety of recipes is shown and it is
you who will have to decide which one to use at a given situation. Finally, at the
third level, overview is in action, which seizes the essence that connects the various
examples and could create new examples if needed.

Partly in connection to this, when we sit at a university lecture, there are three
types of information we can take notes about. The first one is all the formulae and
text appearing on the blackboard or whiteboard or screen. The second type is the
explanation told around those formulae and texts. At last, the third type is the
interpretation and overview that is behind.

Consequently, when you sit at a university lecture, try to take notes according the
following order: do not concentrate on the first type of information but more on the
second, and extremely concentrate on the third type. It is easy to complete the part
you happened to miss from the first type of information – from your neighbour’s
notes, from lecture notes and books etc. – while it is much harder to reproduce
an explanation you missed. At last, be extremely sensitive to grab the third type
because those are the most valuable moments in your university study, lasting for
decades and becoming the ground of your knowledge and thinking at your field.

2.2 The table with the four cells

Although thermodynamics started as the theory of temperature and of heat (ther-
mal interaction), it gradually incorporated mechanical interaction, mass / particle
number interaction, electric and magnetic interaction (and counting). Besides the
historical perspective, it is also possible to approach a field along some organiz-
ing/reorganizing idea, some system in which the collected knowledge is arranged.
Here follows an organized presentation of thermodynamics, which is originally an
application-oriented arrangement along a practical modelling viewpoint. Neverthe-
less, it turns out to be a successful analysis of various principal aspects as well.

The classification considered here is the following table.
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space dependence considered
no yes

ti
m

e
de

pe
nd

en
ce

co
ns

id
er

ed
no 1 3

ye
s 2 4

Table 10.1 Four types of modelling.

Hereafter, cells 1–4 will be denoted in short by 1 , 2 , 3 , 4 , respectively.

The subsequent sections provide an analysis of each of these cells, addressing the
following aspects:

• the state describing quantities,

• time dependence,

• space dependence,

• interactions,

• irreversibility,

• processes,

• the equations determining processes,

• equilibrium,

• stability.

For a first reading, this analysis may appear vague here and there – if you return
here after reading the whole lecture notes material then those points will prove much
clearer.

2.3 Cell 1 – thermostatics

1 will be named here thermostatics but it is also called classical/quasistatic/rever-
sible/equilibrium thermodynamics.
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Thermostatics studies what state quantities describe a system when it is stationary
or near enough to it, and what relationships – so-called constitutive relations – hold
among them.

Consequently, time dependence is not considered, and according to the assumption
that circumstances are ‘quiet’ and quantities are homogeneous enough, space depen-
dence is not assumed, either. (Behind this is the observation that inhomogeneities
typically induce processes, such ones that govern the system towards homogeneity.)
What is allowed is discrete space dependence, i.e., to have more than one system,
each homogeneous in itself, but different systems are allowed to be consisting of
different materials, and to have different extensive state quantities and densities.
Intensive state quantities are assumed to be the same for two systems in interaction.
The simplest arrangement is when one has one system and a ‘very large’ other one
called environment / reservoir / heat bath. Here, ‘very large’ means the limit when
the intensive quantities of the environment do not change if its extensive quantities
change due of interaction with the ‘small’ system.

A system with space independent state quantities is also called a lumped parameter
system – here, ‘parameter’ refers to state quantities, not coefficient constants nor
prescribed external quantities – while a system with space dependence is also referred
to as a distributed parameter system.

The work-type interaction is described by đW = −pdV (the so-called inexact dif-
ferential notation đW intends to indicate that this is not a change of a state quantity
– see more in Sect. 3.2 on exact and inexact differentials) but no similar formula is
used for heat. More closely, a formula đQ = T dS exists but is of little use since one
cannot govern, nor even measure, the change of entropy S. In practice, the problem
is circumvented by using đQ = dE − đW .

In 1 , systems are governed, by externally prescribed interactions. Related to that
intensive quantities are equal for systems in interaction, there is no trace of irre-
versibility,3 e.g., heat can flow in either direction – we have no means in 1 of
deducing this direction from the state quantities.

Processes are also not results of the interactions but are prescribed externally. There
are no equations whose solutions would be the processes. Moreover, not processes
but only the corresponding paths in the state space are considered.

Concerning equilibrium, if you ever meet the word ‘equilibrium’, always identify
whether that person speaks about external equilibrium or internal equilibrium. Ex-
ternal equilibrium is when two systems are in equilibrium with one another (the
intensive quantities are the same for the two systems, they don’t modify one an-

3As a rare exception, internal efficiency of turbines and compressors is related to irreversibility,
but internal efficiency is still not an intrinsic process determining principle but something prescribed
externally ‘by brute force’.
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other’s state etc.). Internal equilibrium is when a system is in equilibrium in itself
(for example, you can visualize your system as a collection of small subsystem parts,
and those subsystems are in equilibrium with each other). Now, in 1 , both external
equilibrium and internal equilibrium are assumed.4

Finally, stability (stability of equilibrium) is a meaningless notion in 1 . See the
next section for what stability is.

2.4 Cell 2 – temporal thermodynamics

2 will be called here temporal thermodynamics. Related names or approaches
are: ordinary thermodynamics, endoreversible thermodynamics, finite-time thermo-
dynamics, control theory.

In 2 , one can have state describing quantities that are missing from the scope of 1 :
time-derivative velocity-like quantities (like volume change rate), space-derivative
type ones, and so-called nonequilibrium/internal variables.

Processes are parametrized by time explicitly, while we still use the lumped param-
eter description.

Interactions between thermodynamical bodies are expressed via interaction functions
– which are analogous to forces in mechanics – as functions of state variables. An
example is the heat-type interaction between two bodies where heating rate is pro-
portional to the difference of the two temperatures. This example immediately shows
as well that irreversibility is present – and is completely common – in 2 .

Processes are results of the interactions, and the equations determining processes are
ordinary differential equations. This is again a similarity to Newton’s equation in
mechanics. Here we already do thermoDYNAMICS.

The mathematical notion of equilibrium is definable in the model, as the stationary
solution of the process determining equations. The equilibrium solution proves to
be (asymptotically) stable. This mathematical notion of equilibrium embodies both
external and internal physical equilibrium. Nonstationary solutions do not exhibit
external equilibrium but may express internal equilibrium (endoreversible systems).
However, 2 is capable of describing internal nonequilibrium phenomena as well, like
viscosity and non-Newtonian rheology.

4In 1 , there is isothermal heat transfer, i.e., two systems have the same temperature but heat

flows from one system to the other (why not vice versa?). Yes, 1 is neither too consistent nor too
realistic.
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2.5 Cell 4 – continuum thermodynamics

In 4 (called, e.g., continuum/nonequilibrium/irreversible thermodynamics, which
is a distributed parameter description), quantities – temperature, density etc. –
have both time and space dependence5; in other terminology, they are fields. Spatial
inhomogeneities bring in further possible interactions, inducing internal nonequilib-
rium, and ‘more’ irreversibility. For example, gradient of temperature induces heat
conduction (transfer of internal energy), which acts towards homogenizing tempera-
ture, towards internal equilibrium regarding temperature, and this is an irreversible
process (it always decreases temperature differences, never increases).

Processes are determined by partial differential equations. Partial differential equa-
tions are much harder to solve than ordinary differential equations so whenever
possible, we try to utilize or assume geometric symmetries to decrease the spatial
dimension 3 to lower. For example, a spherically symmetric situation allows to elim-
inate the two angle-type coordinates of a spherical coordinate system, leaving the
radial coordinate the only one on which spatial dependence is expressed.

2.6 Cell 3 – stationary continuum thermodynamics

3 , a special case of 4 , is interesting not because of principal reasons but more be-
cause of practical reasons. Namely, these are the stationary, time independent – but
space dependent – situations. Recall that stationary situations are very convenient
and advantageous for technology, reliability, calculability etc. Another practical rea-
son is that eliminating the time variable is also an example of when we have reduced
the number of independent variables, the spacetime dimension 4, to 3. 6

In engineering practice, 3 is a frequent target for optimization since stationary
processes ‘take a long time’ so a large gain can be achieved. On the other side,
one also has to be able to reach that optimal stationary state – via a nonstationary,
transient process – safely, and a swith-off (including the case of an accidental abrupt
stop) should also happen under safe circumstances.7

5More properly saying: they have spacetime dependence.
6Time independence is also a case of symmetry – spacetime symmetry –: it’s invariance under

time translation.
7Danger may be added to the cost function used for the optimization.
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3 Thermostatics

3.1 Quantities, variables, functions, states

From introductory thermodynamics about ideal gases and similar, we are acquainted
with the following, so-called extensive, quantities: mass (m), volume (V ), and inter-
nal energy (E). From these, let us form densities:

ϱ ≡ ϱm =
m

V
, ϱE =

E

V
. (14.1)

It is worth mentioning that, in certain situations, one must take into consideration
that internal energy is not purely proportional to volume but a term proportional to
surface area is present (think of surface tension):

E = ϱEV + ηEA. (14.2)

Nevertheless, in what follows we neglect such additional contributions.

Similarly can we define mass-specific – or, simply, specific – quantities, where we
relate to mass:

v =
V

m
, e =

E

m
. (14.3)

In parallel, we know so-called intensive quantities: pressure (p) and [absolute] tem-
perature (T ).

In a number of books on thermodynamics, the question of the existence of tem-
perature is an extensively discussed topic. In the meantime, in some treatments of
thermodynamics, the existence of entropy is not investigated (later, we will investi-
gate it) but is postulated, with various properties. On the practical side, however,
you can buy a device measuring temperature (i.e., a thermometer) at any hypermar-
ket. For a device measuring pressure, you need to find a much more specialized store.
Measuring internal energy (changes) requires an appropriate laboratory setting. At
last, if you ever meet an entropy meter, please let me know8.

For an ideal gas, we know the following two relationships among these quantities:

pV = mRT , E =
f
2
RmT, (14.4)

where

R =
R
M

(14.5)

8mailto:fulop.tamas@gpk.bme.hu
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is the specific gas constant, the universal gas constant R = 8.31446 J
molK divided

by the molar mass M , and the constant f denotes the energy storing degrees of
freedom of one molecule, which is the number of statistically independent energy
storing possibilities of one (atom or) molecule. Namely, according to the microscopic
picture behind the ideal gas model, molecules change energy via random collisions,
and what we perceive macroscopically as temperature is proportional to the average
of microscopic energy changes (average of energy change absolute values). Now, a
spherically symmetric molecule with mass m1 and Cartesian velocity components
vx, vy, vz has f = 3 possibilities corresponding to the three parts of kinetic energy

1

2
m1v

2
x ,

1

2
m1v

2
y ,

1

2
m1v

2
z . (15.1)

A rod-like molecule9 has, in addition, two rotation related degrees of freedom, f = 5
(according to quantum mechanics, rotations can store energy only in finite amounts,
the allowed energy values being inversely proportional to the moment of inertia,
hence, rotation around the axis of the “rod”, with its too small moment of inertia, is
practically forbidden at room temperature – collisions cannot provide enough energy
for it). Molecules with other, more extended, shape have three rotational degrees of
freedom (f = 6). At temperatures above, e.g., 1000K, so-called vibrational (roughly
speaking: elastic) energy storing modes may also become available, raising f above
6. For longer molecules and for molecules containing less tight chemical bonds, this
may occur at a considerably lower temperature.

From introductory thermodynamics, we remember the formulae

cv =
f
2
R, cp =

f + 2

2
R (15.2)

for the isochoric and isobaric specific heat capacities10 of an ideal gas, respectively.
These specific heats are constants as long as f is constant – now, we can see that f
may be T dependent so, consequently, cv and cp may also be T dependent. Then
the combination

E = cvmT (15.3)

of (14.4b) and (15.2a) is also to be replaced by a more general T dependence of E.11

9Important examples are O2 (with M = 32 g/mol), N2 (with M = 28 g/mol), and, therefore,
effectively, air, too (with M = 29.3 g/mol) since air contains 78 % N2, 21 % O2, “and 1 % poison”.

10‘Specific heat capacity’ also runs under the less correct but shorter name ‘specific heat’.
11As one step from (14.4) towards more realistic models, some people allow any (strictly

monotonously increasing) general temperature dependence of E under the name ‘ideal gas’, and
the special case of linear temperature dependence is termed ‘perfect gas’. Throughout this Lecture
Notes, for simplicity, the meaning of ‘ideal gas’ will include constant f , unless explicitly mentioned.
(Anyway, is ‘perfect’ more perfect than ideal, or ‘ideal’ is more ideal than perfect?)
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These two expressions in (14.4) are called the thermal and caloric equations of state
– in other words, constitutive relations –, respectively. Hereafter, we write them in
the form of two functions,

p(T, V,m) =
mRT

V
, E(T, V,m) =

f
2
RmT , (16.1)

which are called constitutive functions. In what follows, it will turn important what
quantity is treated as a function and what quantities its variables are (important
both for the topic of thermodynamical potentials, Sect. 3.4, and for the topic of
phases).

From (16.1) we obtain

p(T, v) =
RT

v
, e(T, v) =

f
2
RT with positive constants R, f . (16.2)

We can observe that these two functions are independent of the extent (mass, volume)
of the gas, and are therefore characteristic to the material. Hereafter, we distinguish
materials and bodies because many of the forthcoming considerations will be specific
to materials themselves – then we will not have to specify a body and bother with
more variables than needed. We will, accordingly, distinguish when we speak about
air and when we speak about the air in the room.

Some other well-known material models, being qualitatively and/or quantitatively
closer to reality than (16.2), are12,13 the Van der Waals model

p(T, v) =
RT

v − b
− a

v2
, e(T, v) =

f
2
RT − a

v
with constants a, b ≥ 0 , (16.3)

the Berthelot model,

p(T, v) =
RT

v −B
− A

Tv2
, e(T, v) =

f
2
RT − 2A

Tv
with constants A,B ≥ 0 ,

(16.4)

the Clausius model,

p(T, v) =
RT

v − β
− α

T (v + γ)2
, e(T, v) =

f
2
RT − 2α

T (v + γ)
(constants α, β, γ ≥ 0),

(16.5)
12In sources like Wikipedia, you may find these models under the term ‘real gases’. Fortunately,

by now you already know that all these are mere models, too, just maybe somewhat better approx-
imations to reality. (Better examples for real gases are cow belching and fart.)

13Beware that, frequently, e.g., in chemistry, specific volume and other specific quantities are
defined as particle number specific or molar specific, rather than mass specific. For those purposes,
the constants a, b, . . . here have to be adapted accordingly (multiplying them by appropriate powers
of M).
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the Dieterici, the Redlich–Kwong, the Martin, the Peng–Robinson, the Wohl, the
Beattie–Bridgeman, the Benedict–Webb–Rubin, the Starling etc. models with more
and more constants (high-precision models like IAPS1984 for water/steam14 have
more than 60 constants), and, finally, the virial expansion formula (which is a series
in powers of 1

v ),

p(T, v) =
RT

v

(
1 +

c1(T )

v
+

c2(T )

v2
+ · · ·

)
, (17.1)

e(T, v) =
f
2
RT −RT 2

(
c′1(T )

v
+

c′2(T )

v2
+ · · ·

)
(17.2)

with prime denoting derivative, with respect to temperature, of the coefficient func-
tions c1(T ), c2(T ), . . . .

A microscopic argument for the Van der Waals model, (16.3), is that molecules have
not only kinetic energy – which explains the first term in e(T, v) – but also potential
energy coming from distance dependent attraction between any two molecules –
hence the distance related (thus v related) second term in e(T, v). In pressure, which
is the macroscopic manifestation of microscopic forces, this attraction is also visible.
In addition, molecules have some finite volume, and a rigid-body collision occurs
whenever two of them get too close to one another; correspondingly, the available
volume for their flight is decreased by their own volume, hence the difference v − b
in the motion related term of pressure [but b has no role in e(T, v) – the macroscopic
manifestation of microscopic energies – as long as kinetic energy conservation holds
for the rigid-body collisions].

This microscopic picture is appealing but reality is more complex.15 The complexities
are reflected in the historically subsequent material models, with more and more
coefficients in more and more complicated formulae.

It is important to note that, just like in the ideal gas case (cf. Footnote 11 on
page 15), the purely temperature dependent term f

2RT in all of the above models
can be replaced by any function ε(T ) that satisfies dε/dT > 0 .

Remarkably, in most books and other sources, for each such model, only the thermal
constitutive function p(T, v) is provided. As we will see in Sect. 3.3, e(T, v) can
then be derived, due to a consistency condition, (26.5), which stems from the exis-
tence and properties of entropy.16 However, this derivation does not provide e(T, v)
uniquely, and the ambiguity proves to be just the freedom in choosing the solely tem-
perature dependent term ε(T ). The uncertainty in ε(T ) [in case of ε(T ) = f

2RT : the
14J. Kestin and J. V. Sengers: New international formulations for the thermodynamic properties

of light and heavy water, J. Phys. Chem. Ref. Data 15 (1986) 305–320.
15As always.
16It is this condition that determines the second term of e(T, v) in each of the models above from

the corresponding p(T, v) .
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uncertainty in f ] has important engineering consequences. Namely, entropy and all
other thermodynamical potentials, and thus all related phenomena, depend on this
ambiguity, as we will see in Sect. 3.3. One such phenomenon is whether a material
is ‘wet’ or ‘dry’17 : dry ones are much more advantageous in turbines. Now, a Van
der Waals model with f > 10 turns out to be dry.17 Therefore, a material model is
properly given only if both the thermal constitutive function p(T, v) and the caloric
one e(T, v) are fully specified.

There is not only an equality-type condition [the above already mentioned (26.5)]
that any p(T, v) , e(T, v) must satisfy. In parallel, two inequalities must also hold,
which we call hereafter material stability conditions:

∂e

∂T

∣∣∣∣
v

> 0 , (18.1)

∂p

∂v

∣∣∣∣
T

< 0 . (18.2)

These inequalities18 are historically present in the Le Chatelier–Braun principle,
which, roughly speaking, says that quantities of a system change under any external
action in a way that decreases the extent of that action. Actions–interactions, pro-
cesses, and stability will be discussed first within 2 in Sect. 4 but one aspect can
already be realized here in 1 : if something holds for any type of interaction of a
material then it may be a property of the material, not of the possible interactions.19
This happens here where the conditions (18.1)–(18.2) are formulated for the material
itself [actually without any need for speaking about interactions between systems].
While the full role of (18.1)–(18.2) will be recognized within 2 , the existence of
more than one phase will be one consequence of them already in 1 .

While the above-seen range of modelling capabilities seems quite broad, this may not
be enough. Namely, the quantities T and v may or may not be able to describe the
thermodynamical state of a material. For example, electric or magnetic interactions
are related to some further state characterizing quantities of vectorial type. Further-
more, even within the scope of heat and work type interactions, materials in solid
state are not characterized fully via T and v since a solid body with fixed temper-
ature, mass, and volume can have various different geometric shapes with different
(elasticity-originated) internal energy values, which a volume variable is not enough

17Wikipedia: Working fluids (as of 2019-02-19); A. Groniewsky, G. Györke, and A. R. Imre:
Description of wet-to-dry transition in model ORC working fluids, Applied Thermal Engineering
125 (2017) 963–971; DOI:10.1016/j.applthermaleng.2017.07.074.

18which, equivalently, say that isochoric specific heat and isothermal compressibility are positive
– see more on them later

19See, e.g., U. Grigull: Das Prinzip von Le Chatelier und Braun, International Journal of Heat
and Mass Transfer 7 (1964) 23–31; DOI:10.1016/0017-9310(64)90020-1.

https://doi.org/10.1016/j.applthermaleng.2017.07.074
https://doi.org/10.1016/0017-9310(64)90020-1
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to characterize. In fact, solid materials require a symmetric tensor, rather than a
scalar, geometric variable. (See more on it in Sect. 3.14.) In addition, even when v is
enough to describe the relevant aspects of geometry, its time derivative dv/dt may
also be needed as a state variable – as we will see in Sect. 4.4.20 In what follows,
we speak about a simple material when the variables T, v suffice to characterize the
thermodynamical state of a given material. In other words, the state space – denoted
by Z hereafter – of a simple material is parametrizable by the quantities T, v.21

In the 1 approach, a process of a material is a continuous sequence of states.22 As
indicated in Sect. 2.3, in 1 processes are treated in a half-hearted way, and one
manifestation of this is that, in 1 , processes are usually parametrized by some state
quantity, rather than by time. Sometimes it is only a part of a process within which
a state quantity characterizes the states uniquely. For example, during a Carnot
cycle, temperature cannot parametrize the two isothermal parts. Then one needs to
switch to some other quantity as parameter. (Or to switch to parametrizing by time,
in the spirit of 2 .)

In many applications, such processes are considered during which some state quantity
remains constant. Such examples are isothermal (constant-temperature), isochoric
(constant-volume), isobaric (constant pressure) processes [and, with quantities to be
introduced later, isentropic and isenthalpic processes, too]. Restrictions that some
quantity must stay constant during a process are either suggested by the circum-
stances or are introduced by us as (hopefully) good enough approximations.

For a simple material, a state ζ in the state space Z can also be uniquely identified via
the quantities e, v.23 Actually, for certain purposes the latter characterization is more
convenient, and there are situations when even more different variable pairs come
useful. Hence, the topic of variable transformations – applied for the constitutive
and other state dependent functions – is very important in thermodynamics. The
next section contains a collection of related mathematical rules we are going to apply
hereafter.

3.2 Necessary mathematical ingredients

We start with a list of identities concerning partial derivatives, all deriv-
able from rules mentioned on page 5. We assume that all required mathematical

20In such a case, we must unavoidably move outside of 1 .
21Note that, while the value of T can be anything non-negative, some models forbid v to take

arbitrarily small positive values. For example, the Van der Waals model forbids v ≤ b. This is
actually realistic if we consider b to be related to the volume of the molecules themselves (see more
on this in Sect. 3.10.)

22In other words, a process is an oriented curve in the state space.
23This follows from the material stability inequality (18.1).
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conditions hold. The notation applied here will be oversimplifying, convenient for
application but hiding the fact that one has composite functions here. Never forget
that we differentiate not “quantities with respect to quantities” but functions with
respect to variables. For example, ∂z

∂x

∣∣
y

indicates that z is a function with variables
x and y. For composite functions, this has to be treated mutatis mutandis.

Identity ○1 :
∂z

∂y

∣∣∣∣
x

=
1

∂y

∂z

∣∣∣∣
x

, (20.1)

Identity ○2a :
∂u

∂z

∣∣∣∣
x

=
∂u

∂y

∣∣∣∣
x

· ∂y
∂z

∣∣∣∣
x

, (20.2)

Identity ○2b :
∂u

∂y

∣∣∣∣
x

=
∂u
∂z

∣∣
x

∂y
∂z

∣∣
x

, (20.3)

Identity ○3 :
∂z

∂x

∣∣∣∣
y

· ∂x
∂y

∣∣∣∣
z

· ∂y
∂z

∣∣∣∣
x

= −1 , (20.4)

Identity ○4a :
∂u

∂x

∣∣∣∣
z

=
∂u

∂x

∣∣∣∣
y

+
∂u

∂y

∣∣∣∣
x

· ∂y

∂x

∣∣∣∣
z

, (20.5)

Identity ○4b :
∂u

∂x

∣∣∣∣
y

=
∂u

∂x

∣∣∣∣
z

−

∂u

∂z

∣∣∣∣
x

∂y

∂z

∣∣∣∣
x

· ∂y

∂x

∣∣∣∣
z

. (20.6)

Second, let us briefly summarize the topic of potentials. A vector field

v (x, y, z) =

vx
vy
vz

 (20.7)

in a three-dimensional Euclidean24 vector space, expressed in Cartesian coordinates,
24If the vector space is not Euclidean then we must consider a covector field here. In a Euclidean

space, the scalar product provides a natural identification between vectors and covectors (elements
of the vector space and elements of the dual space). For our purposes of thermodynamics below,
the vector space will not be Euclidean but will be the Cartesian product of one-dimensional vector
spaces – thus, the dual space is the Cartesian product of the one-dimensional dual spaces, and
a one-dimensional dual space is the set of reciprocal values – so the treatment of covectors is so
natural that we will not need to emphasize the difference from vectors.
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is said to have a potential if there is a scalar field function u(x, y, z) such that25

v = gradu, i.e.,


vx

vy

vz

 =


∂u
∂x

∂u
∂y

∂u
∂z

 . (21.1)

The following four statements are equivalent (up to mathematical assumptions):

− to a vector field v, there exists a scalar field u satisfying gradu = v ,

− curlv = 0 ,

− the line integral
´ r

r=r0
v(r̃) dr̃ is independent of the path connecting r0 and r,

− the closed line integral
¸
v(r̃) dr̃ is zero along any closed line.

Among these, the second one is the easiest to check:

curlv =


∂vz
∂y − ∂vy

∂z

∂vx
∂z − ∂vz

∂x

∂vy
∂x − ∂vx

∂y

 ?
=


0

0

0

 . (21.2)

Notably, if v has a potential u then u + const. is also a potential for v [since an
additive constant drops out when checking (21.1)].

If v has a potential u then one can determine it via

u(r) = u(r0) +

ˆ r

r=r0

v(r̃) dr̃ (21.3)

along any path that connects r0 and r. Here, u(r0) remains undetermined because
of the mentioned ambiguity in an additive constant. Frequently, a convenient choice
is a path that consists of three segments, the first in the x direction, the second in
the y direction, and the third in the z direction:

u(x, y, z) = u0 +

ˆ x

x̃=x0

vx(x̃, y0, z0) dx̃+

ˆ y

ỹ=y0

vy(x, ỹ, z0) dỹ +

ˆ z

z̃=z0

vz(x, y, z̃) dz̃

(21.4)

with the shorthand u0 = u(x0, y0, z0) .
25For the purpose of potential energy related to a force field, and for some similar applications,

physics puts a minus sign before the grad in the definition (21.1). In mathematics and in thermo-
dynamics, that minus sign would be an unnatural choice.
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In two dimensions, there is only one condition to check:

∂vy
∂x

− ∂vx
∂y

?
= 0 , or, written more simply,

∂vy
∂x

?
=

∂vx
∂y

. (22.1)

Finally, staying closely related to both partial derivatives and potentials, let us
collect a few facts about differentials, without precisely explaining what they are26;
here in thermodynamics you can think of the small change of a state quantity as we
move from a state ζ in the state space Z to a “nearby” other state ζ̃. For example,
you can think of dp as the small pressure difference

dp ≈ p
(
ζ̃
)
− p(ζ) . (22.2)

The Leibniz rule for the derivative of products has an analogous version for differ-
entials:

d(fg) = g df+ fdg . (22.3)

Similarly, the analogy of the rule of differentiation of multivariate composite functions
(see Sect. 1.1) is

dz =
∂z

∂x

∣∣∣∣
y

dx+
∂z

∂y

∣∣∣∣
x

dy , i.e., dz(x, y) =
∂z

∂x

∣∣∣∣
y

(x, y)dx+
∂z

∂y

∣∣∣∣
x

(x, y)dy .

(22.4)

Intuitively, this says that, if x changes a bit and y also changes a bit, then a function
z depending on them also changes a bit, according to (22.4).

One important and convenient application of (22.4) is that, whenever we see a for-
mula

dz = fdx+ gdy , (22.5)

this formula is actually a compact way of displaying two things:

f =
∂z

∂x

∣∣∣∣
y

, g =
∂z

∂y

∣∣∣∣
x

. (22.6)

A so-called Pfaffian27,

a(x, y)dx+ b(x, y)dy (22.7)

26Exterior derivatives of scalar functions on a differentiable manifold (here, on Z ).
27Under other names: a covector field, a one-form.
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is, in general, only a so-called inexact differential28, i.e., it is not the differential of
a function. Expression (22.7) is a differential of a function u(x, y),

a(x, y)dx+ b(x, y)dy = du(x, y) , i.e., a(x, y) =
∂u

∂x

∣∣∣∣
y

and b(x, y) =
∂u

∂y

∣∣∣∣
x

(23.1)

if and only if

∂a

∂y

∣∣∣∣
x

=
∂b

∂x

∣∣∣∣
y

. (23.2)

Let us observe that, here, we actually ask whether the two-dimensional vector field(
a(x, y)

b(x, y)

)
(23.3)

has a potential [cf. (22.1)], in other words, whether there is a u(x, y) for which

∂u

∂x

∣∣∣∣
y

= a and
∂u

∂y

∣∣∣∣
x

= b ; or, in other form,

(
a

b

)
=

(
∂u
∂x

∣∣
y

∂u
∂y

∣∣
x

)
. (23.4)

If a potential exists then it can be reconstructed from a and b, for example via the
line integral [cf. (21.4)]

u(x, y) = u(x0, y0) +

ˆ x

x̃=x0

a(x̃, y0) dx̃+

ˆ y

ỹ=y0

b(x, ỹ) dỹ , (23.5)

where, as already mentioned, the initial point (x0, y0) is arbitrary, and u(x, y) is
undetermined up to a constant, hence the arbitrary value u(x0, y0). Note that, in
the first integral, not y but y0 appears, while in the second one not x0 but x.

Differentials are convenient and effective since many steps one would instinctively
perform are actually valid steps. For example, expressing dx from dz = fdx+gdy ,

dx = −g

f
dy +

1

f
dz (23.6)

does indeed say that the meanings (22.6) of f, g are compatible with

−g

f
=

∂x

∂y

∣∣∣∣
z

,
1

f
=

∂x

∂z

∣∣∣∣
y

, (23.7)

28Recall the inexact differentials known from basic thermodynamics, đQ = T dS and đW =
−pdV , invoked in Sect. 2.3.
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the properties following from (22.4) applied to x(y, z) . In other words, the rules
for derivatives during variable transformations (including identities ○1 – ○4b ) are
reflected automatically when manipulating with differentials.

Another convenient notion is that of restricted differentials. For example, one can
think of dp|T as representing a small change in pressure during an isothermal pro-
cess.29 The ratio of two restricted differentials can be meaningful and useful: e.g.,

dp|T
dv|T

=
∂p

∂v

∣∣∣∣
T

, (24.1)

just as one would heuristically think. Analogously, one can speak about restriction
along a process. As an important application, specific heat capacity along any given
process is defined as

cprocess =
đq|process

dT |process
, (24.2)

a small amount of mass-specific heat along a process, divided by the corresponding
small temperature change (recall Sect. 2.3 for the notation đ). As examples,

cv =
đq|v
dT |v

, cp =
đq|p
dT |p

etc. (24.3)

Apparently, specific heat capacities are, in general, both state dependent and process
dependent. It is only some special material models and some special processes when
the corresponding specific heat capacity is constant. For ideal gases with constant cv,
the so-called polytropic processes – the ones during which cprocess = const. – prove to
be the ones for which pvα = const. with arbitrary −∞ ≤ α ≤ ∞ (called polytropic
index 30), and the corresponding constant specific heat capacity is (see Problem 3)
cα = cv +

R
1−α .

In parallel, if a process is parametrized by time then a ratio of time derivatives can
be expressed via restricted differentials, e.g.,

dp/dt

dv/dt
=

dp|process

dv|process
. (24.4)

For example, along an isothermal process,

dp/dt

dv/dt
=

dp|T
dv|T

(24.1)

=
∂p

∂v

∣∣∣∣
T

. (24.5)

29A side remark: the mathematically more informative notation would be dp|Ker dT where Ker
denotes the kernel: we restrict the domain of definition of dp to a subset, in our case, to a linear
subspace.

30Frequently, the polytropic index is denoted by n, which notation falsely suggests that its value
could only be some integer, however, in fact, it can be −

√
π as well.
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3.3 The entropic property of simple materials

A simple material will be called entropic if the vector field 1
T (e,v)

p(e,v)
T (e,v)

 =

 1
T

p
T

 (e, v) (25.1)

has a potential. By (23.2)–(23.4), this is equivalent to31

∂ 1
T

∂v

∣∣∣∣
e

=
∂ p

T

∂e

∣∣∣∣
v

. (25.2)

In such a case, the potential, called specific entropy, calculated using (23.5), is

s(e, v) = s(e0, v0) +

ˆ e

ẽ=e0

1

T
(ẽ, v0) dẽ+

ˆ v

ṽ=v0

p

T
(e, ṽ) dṽ . (25.3)

For instance, for the ideal gas with constant cv = f
2R , (16.2), we find 1

T (e,v)

p(e,v)
T (e,v)

 =

 f
2R

e

R
v

 ;
∂ 1

T

∂v

∣∣∣∣
e

=
∂ p

T

∂e

∣∣∣∣
v

= 0 (25.4)

so this material is entropic, and its specific entropy is [cf. (25.3)]

s(e, v) = s0 +

ˆ e

ẽ=e0

f
2R

ẽ
dẽ+

ˆ v

ṽ=v0

R

ṽ
dṽ = s0 +

f
2
R ln

e

e0
+R ln

v

v0
(25.5)

[with the abbreviation s0 = s(e0, v0) ].

Probably all known simple materials are entropic.

For entropic simple materials, we have32

ds =
1

T
de+

p

T
dv , (25.6)

rearranging which gives the so-called Gibbs relation,

de = T ds− pdv , (25.7)

31In order to check (25.2) for a given simple material, one has to express T from e(T, v), obtaining
thus T (e, v). Then, substituting T (e, v) into p(T, v) yields the other ingredient, p(e, v).

32Actually, the historically raised question was more like this: can de+pdv be made an exact/total
differential – the differential of a function – via dividing by an appropriate function T (e, v)? Such
a factor, here 1

T
, is called an integrating factor in general.
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which, as seen in (22.5)–(22.6), is a concise encoding of

T =
∂e

∂s

∣∣∣∣
v

, −p =
∂e

∂v

∣∣∣∣
s

. (26.1)

Interactions will be possible to describe seriously in 2 but, nevertheless, the inexact
differentials

đw = −pdv , đq = de− đw = de+ pdv
(25.7)

= T ds , (26.2)

can already be treated here, with our present tools, and can be utilized. For example,
the definition of specific heat capacity seen in (24.2)–(24.3) can be rewritten in forms
advantageous for applications, as

cprocess =
đq|process

dT |process
=

de|process + p dv|process

dT |process
, e.g., cv =

de|v
dT |v

=
∂e

∂T

∣∣∣∣
v

,

(26.3)

cprocess =
đq|process

dT |process
= T

∂s

∂T

∣∣∣∣
process

, e.g., cv = T
∂s

∂T

∣∣∣∣
v

, cp = T
∂s

∂T

∣∣∣∣
p

. (26.4)

Again as a reminder: here, we treat a generic simple material so we have, in general,
cprocess(T, v), cv(T, v), cp(T, v).

A convenient reformulation of condition (25.2), in terms of p(T, v) and e(T, v) – the
functions we usually have directly, such as in (16.2)–(17.2) – is

∂e

∂v

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
v

− p . (26.5)

The outline of obtaining (26.5) from (25.2) is

− 1

T 2

∂T

∂v

∣∣∣∣
e

=
T ∂p

∂e

∣∣
v
− p ∂T

∂e

∣∣
v

T 2
,

∣∣∣∣∣ · T 2 ∂e
∂T

∣∣
v

(26.6)

− ∂T

∂v

∣∣∣∣
e

∂e

∂T

∣∣∣∣
v

= T
∂p

∂e

∣∣∣∣
v

∂e

∂T

∣∣∣∣
v

− p
∂T

∂e

∣∣∣∣
v

∂e

∂T

∣∣∣∣
v

, (26.7)

○3

∂e

∂v

∣∣∣∣
T

= T

○2a
∂p

∂T

∣∣∣∣
v

−
○1

p . (26.8)
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Using the Maxwell relations we meet in Sect. 3.5, this calculation can be considerably
shortened [see (31.1)], serving thus as an example why the Maxwell relations are
beneficial.

It is a good exercise to check that the material models (16.2)–(17.2) are entropic,
i.e., each satisfy (26.5).

In fact, as anticipated in Sect. 3.1, (26.5) enables us to determine e(T, v) from p(T, v)
to a certain extent. Namely, indefinite integration of (26.5) in v gives

e(T, v) =

ˆ (
T

∂p

∂T

∣∣∣∣
v

− p(T, v)

)
dv + C(T ) , (27.1)

where C(T ) is a constant of integration with respect to variable v but can depend
on the other variable, T .

As an example, for the Van der Waals thermal constitutive function p(T, v) =
RT
v−b −

a
v2 ,

T
∂p

∂T

∣∣∣∣
v

− p =
a

v2
, (27.2)

and (27.1) yields

e(T, v) =

ˆ
a

v2
dv + C(T ) = −a

v
+ C(T ) (27.3)

so e(T, v) in (16.3) is recovered up to a solely temperature dependent term – which
was denoted by ε(T ) on page 17. For fixing the ambiguity, we need extra information
or requirement – e.g., that, in the ideal gas limit a → 0 , b → 0 , (16.2) is obtained.

This is the method to (partially) determine e(T, v) whenever only p(T, v) is pro-
vided.

In parallel, this method prevents us from running into trouble regarding measure-
ments. That is, all measurements are burdened with errors. Now, if reconstruct both
p(T, v) and e(T, v) separately, from measurement data and some fitting procedure,
(26.5) will be violated almost surely. Avoid measuring too much: you will save time,
effort, and money while you also avoid running into such an inconsistency.33

33Nevertheless, some extra measurements are useful for checking. Also, you might discover a
nonentropic material, and get a Nobel prize.
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3.4 Thermodynamical potentials

One reason why the entropic property is remarkable is as follows. Let us take a look
at (25.6): it says us that

∂s

∂e

∣∣∣∣
v

=
1

T
,

∂s

∂v

∣∣∣∣
e

=
p

T
. (28.1)

The first of these two equalities enables us to determine T (e, v) from s(e, v) [i.e.,
from its partial derivative w.r.t. 34 its first variable]. By expressing e from T (e, v),
we recover the caloric constitutive function e(T, v). In parallel, from the second of
the equalities (28.1) and the already known T (e, v) we can deduce p(e, v). With
the aid of the also already determined e(T, v), we end up with p(T, v), the thermal
constitutive function. In summary, we have been able to extract all constitutive
information (in our case: the two constitutive functions) from one function, s(e, v).

Whenever a function contains, via its derivatives, all thermodynamical information
about a material, we call it a thermodynamical potential function.35 s(e, v) is there-
fore an example of a thermodynamical potential function. Also, we will call s a
thermodynamical potential quantity, and e, v its natural variables. To restate, a
thermodynamical potential quantity as a function of its natural variables forms a
thermodynamical potential function.

Another example can be observed when inspecting (26.1). That is, T (s, v) is provided
by the first equality, from which s can be expressed as the function of (T, v). Next,
the second equality delivers p(s, v), which, with s(T, v), yields p(T, v), which is the
thermal constitutive function. In parallel, s(T, v) substituted into e(s, v) itself gives
us e(T, v), i.e., the caloric constitutive function. In consequence, e(s, v) is also a
thermodynamical potential function, and e is a thermodynamical potential quantity,
with s, v as its natural variables.

Entropy (specific entropy), with its above-seen properties, makes it possible to define
further thermodynamical potentials as well. One of them is specific free energy (also
called specific Helmholtz free energy or specific Helmholtz energy),

f = e− Ts (28.2)

for which we find, from (25.7) and (22.3),

df = −sdT − pdv , which encodes − s =
∂f

∂T

∣∣∣∣
v

, −p =
∂f

∂v

∣∣∣∣
T

(28.3)

34with respect to
35Recall Sect. 3.2: at the general level, a potential is always such a function that encodes, via its

derivatives, more than one function. So to say, it is an effective lossless data compression method.
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and that the natural variables of f are T , v. Similarly defined are specific enthalpy,

h = e+ pv (29.1)

with

dh = T ds+ vdp , T =
∂h

∂s

∣∣∣∣
p

, v =
∂h

∂p

∣∣∣∣
s

(29.2)

and having natural variables s, p, and specific Gibbs potential (also called specific
free enthalpy, specific Gibbs free energy, or specific Gibbs energy),

g = e− Ts+ pv (29.3)

with

dg = −sdT + vdp , −s =
∂g

∂T

∣∣∣∣
p

, v =
∂g

∂p

∣∣∣∣
T

(29.4)

with natural variables T , p.36 To anticipate some benefits of these further thermody-
namical potential quantities, f proves useful for isothermal and isochoric processes,
h for adiabatic and isobaric ones, while g proves important in the topic of phases and
for chemical reactions. As another example, the measurement-based high-precision
IAPS1984 model for water/steam (cf. Footnote 14 on page 17) offers f(T, v) only,
and everything else – constitutive functions, specific heat capacities etc. – has to be
derived from it. As further and immediate advantages,

đq
(26.2)

= de+ pdv

(29.1),
(22.3)

= dh− vdp, đq|p = dh|p , cp =
đq|p
dT |p

=
∂h

∂T

∣∣∣∣
p

.

(29.5)

Without going into details, a separate remark is that the way how (28.2), (29.1),
and (29.3) introduce new quantities and corresponding new variables, are special
examples of the so-called Legendre transform. In mechanics, the Legendre transform
also appears, connecting the Hamiltonian with the Lagrangian. For nice properties
of the Legendre transform, convexity is required – see more on this in Sect. 3.7.

Closing this section with an important note, it is not enough to speak about ther-
modynamical potential quantities – we also have to ensure that they are given in
their natural variables. Otherwise they are not thermodynamical potential functions:
they do not encode all constitutive information. As an example, in Sect. 3.6 we will
determine s(T, v) for the Van der Waals model, and find explicitly that it does not
contain all information about the material.

36Actually, the existence of liquid and gas phases of simple materials is related to that describing
states in variables T , p is nontrivial, which is thus ‘a feature rather than a bug’.
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3.5 Maxwell relations and Gibbs–Helmholtz relations

As already mentioned in the last paragraph of Sect. 3.3 in page 27, whenever we
have some relationship among quantities then we have to measure less, as well as we
avoid inconsistency among measurement data. With the aid of the thermodynamical
potential functions f , h, and g, it is possible to derive/reveal such relationships,
analogous to (26.5).

In the light of (22.5)–(22.6) and Young’s theorem on the arbitrary order of mixed
derivatives, ∂2u

∂x∂y = ∂2u
∂y∂x (recall page 5), we find the Maxwell relations,

de = T ds− pdv =⇒ ∂T

∂v

∣∣∣∣
s

=
∂(−p)

∂s

∣∣∣∣
v

, i.e.,
∂T

∂v

∣∣∣∣
s

= − ∂p

∂s

∣∣∣∣
v

, (30.1)

df = −sdT − pdv =⇒ ∂(−s)

∂v

∣∣∣∣
T

=
∂(−p)

∂T

∣∣∣∣
v

, i.e.,
∂s

∂v

∣∣∣∣
T

=
∂p

∂T

∣∣∣∣
v

, (30.2)

dh = T ds+ vdp =⇒ ∂T

∂p

∣∣∣∣
s

=
∂v

∂s

∣∣∣∣
p

, (30.3)

dg = −sdT + vdp =⇒ ∂(−s)

∂p

∣∣∣∣
T

=
∂v

∂T

∣∣∣∣
p

, i.e.,
∂s

∂p

∣∣∣∣
T

= − ∂v

∂T

∣∣∣∣
p

. (30.4)

So far, the thermodynamical potential quantities have been considered in their nat-
ural variables. The Gibbs–Helmholtz relations provide them in natural variables of
another such quantity. As an example, let us determine e(T, v): T, v are the natural
variables of f so we proceed as

e = f + Ts = f − T
∂f

∂T

∣∣∣∣
v

, i.e., e(T, v) = f(T, v)− T
∂f

∂T

∣∣∣∣
v

, (30.5)

bearing in mind s = − ∂f
∂T

∣∣∣
v
, as seen in (28.3).

For instance, such tasks arise when constitutive information about a simple material
is provided in the form of f(T, v), like for the IAPS1984 model for water/steam (cf.
Footnote 14 in page 17): then the other thermodynamical potential quantities e, h,
g can be derived using the appropriate Gibbs–Helmholtz relation.
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3.6 Utilizing the relationships among derivatives

As the first application, let us prove (26.5) from the consequences of the properties
of s(e, v) in a much shorter way:

∂e

∂v

∣∣∣∣
T

○4a
=

∂e

∂v

∣∣∣∣
s

+
∂e

∂s

∣∣∣∣
v

∂s

∂v

∣∣∣∣
T

=
(26.1)

−p +

(26.1)

T

(30.2)

∂p

∂T

∣∣∣∣
v

. (31.1)

In the second example, let us determine s(T, v) of a simple material if its thermal
constitutive function p(T, v) is given while, concerning caloric information, we don’t
know e(T, v) but only its isochoric specific heat cv(T, v0) for any T but only a single
fixed v0. [This is quite a realistic scenario: for example, we have measured cv for
various temperature values but we had time to do this for only one value of specific
volume.]

Integrating the differential

ds(T, v)
(22.4)

=
∂s

∂T

∣∣∣∣
v

dT +
∂s

∂v

∣∣∣∣
T

dv =

(26.3)

cv(T, v)

T
dT +

(30.2)

∂p

∂T

∣∣∣∣
v

dv (31.2)

from a T0 and the given v0 distinguished in our problem, we obtain

s(T, v)
(23.5)

= s(T0, v0) +

ˆ T

T̃=T0

∂s

∂T

∣∣∣∣
v

(T̃ , v0) dT̃ +

ˆ v

ṽ=v0

∂s

∂v

∣∣∣∣
T

(T, ṽ) dṽ

(31.2)

= s(T0, v0) +

ˆ T

T̃=T0

cv(T̃ , v0)

T̃
dT̃ +

ˆ v

ṽ=v0

∂p

∂T

∣∣∣∣
v

(T, ṽ) dṽ , (31.3)

which is, as a matter of fact, the answer to our problem since, fortunately, it does not
demand anything more than we have. The trick was actually that we calculate the
integral along such a path that, during its first part, v does not change but remains
the value v0 at which we have cv. During the second part, we have freedom: the
thermal constitutive function we had at all values T, v.

For the ideal gas model (16.2), with its constant cv = f
2R, (31.3) yields

s(T, v) = s0 +

ˆ T

T̃=T0

f
2R

T̃
dT̃ +

ˆ v

ṽ=v0

R

ṽ
dṽ = s0 +

f
2
R ln

T

T0
+R ln

v

v0
(31.4)

[with the abbreviation s0 = s(T0, v0) ], in accord with (25.5) [recall the relationship
(16.2) between T and e].
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Similarly, for the Van der Waals model (16.3), we again have cv = f
2R = const. but

now ∂p
∂T

∣∣
v
= R

v−b and, therefore,

s(T, v) = s0 +

ˆ T

T̃=T0

f
2R

T̃
dT̃ +

ˆ v

ṽ=v0

R

ṽ − b
dṽ = s0 +

f
2
R ln

T

T0
+R ln

v − b

v0 − b
. (32.1)

A remarkable thing to observe here is that this result is independent of a. Conse-
quently, s(T, v) does not contain all constitutive information about the material.
This is an apparent example of that, though s is a thermodynamical potential
quantity, it is a thermodynamical potential function only in its natural variables
e, v – it encodes all material properties only in its natural variables. [Reassur-
ingly, when expressing T from the caloric e(T, v) = f

2RT − a
v and substituting

this T (e, v) = 2
f R

(
e+ a

v

)
into s(T, v), the resulting s(e, v) will contain a.]

As the third problem, let us express cp − cv of a simple material only using
p(T, v). Why this task is relevant is that, concerning caloric information, we may
have experimental knowledge or some model expectation on cv(T, v), but we only
know the thermal constitutive function in addition; and from these we try to gain
some further caloric information [namely, cp(T, v)] without any further measurement
or assumption.37

cp − cv
T

(26.3)

=
∂s

∂T

∣∣∣∣
p

− ∂s

∂T

∣∣∣∣
v

○4b
= −

∂s
∂v

∣∣
T

∂p
∂v

∣∣
T

∂p

∂T

∣∣∣∣
v

= −

(30.2)

∂p
∂T

∣∣
v

∂p
∂v

∣∣
T

∂p

∂T

∣∣∣∣
v

, (32.2)

cp − cv = −T

(
∂p
∂T

∣∣
v

)2
∂p
∂v

∣∣
T

= T

(
∂p
∂T

∣∣
v

)2
−∂p

∂v

∣∣
T

. (32.3)

Here, the second version of the outcome is also informative since, due to the material
stability inequality ∂p

∂v

∣∣∣
T
< 0 again, it emphasizes that

cp − cv ≥ 0 , cp ≥ cv

(29.5),
(18.1)

> 0 (32.4)

for any simple material.

As always, it is a good idea again to check the result for some well-known special
case so let us check it for the ideal gas

[
p(T, v) = RT

v , cv = f
2R, cp = f +2

2 R
]

:

cp − cv = −T

(
R
v

)2
−RT

v2

= −T
R2

v2

−RT
v2

= R : ✓ (32.5)

37Don’t forget that, here, we consider any simple material so both cv and cp are T, v dependent
in general.
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The fourth application deals with the speed of sound vsound in simple materials,
for which a continuum mechanical derivation has found (expressed using density ϱ)38

vsound =

√
∂p

∂ϱ

∣∣∣∣
s

. (33.1)

Our task is to prove that (33.1) can be rewritten in the more practical form

vsound =

√
−v2

cp
cv

∂p

∂v

∣∣∣∣
T

. (33.2)

The initial step is simple: let us change the variable ϱ to v = 1
ϱ :

∂p

∂ϱ

∣∣∣∣
s

=
∂p

∂v

∣∣∣∣
s

· dv
dϱ

=
∂p

∂v

∣∣∣∣
s

· −1

ϱ2
= −v2

∂p

∂v

∣∣∣∣
s

. (33.3)

From this point we continue in two ways. First, let us see an advanced usage of
restricted differentials. Analogously to (31.2) leading to

ds =
cv
T

dT +
∂p

∂T

∣∣∣∣
v

dv , (33.4)

we find39

ds
(22.4)

=
∂s

∂T

∣∣∣∣
p

dT +
∂s

∂p

∣∣∣∣
T

dp =

(26.3)

cp
T

dT −

(30.4)

∂v

∂T

∣∣∣∣
p

dp . (33.5)

Now, along an isentropic process, ds = 0 , (33.4) and (33.5) give, respectively,

0 =
cv
T

dT |s +
∂p

∂T

∣∣∣∣
v

dv|s =⇒ dv|s = − cv

T ∂p
∂T

∣∣
v

dT |s , (33.6)

0 =
cp
T

dT |s −
∂v

∂T

∣∣∣∣
p

dp|s =⇒ dp|s =
cp

T ∂v
∂T

∣∣
p

dT |s . (33.7)

38The physical idea is that waves are small density and pressure oscillations – and, correspond-
ingly, temperature oscillations – that are usually fast enough (high-frequency enough) so heat can be
neglected: heat conduction induced by the space dependence of temperature does not have enough
time to modify anything before the oscillation reverses the sign of temperature difference between
two neighboring volumes of the material. Neglected đq = T ds [recall (26.2)] means ds = 0.

39Using variables T, p works only within one phase, as foreshadowed in Footnote 36 in page 29.
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Dividing the two outcomes yields

dp|s
dv|s

like in
(24.1)

=
∂p

∂v

∣∣∣∣
s

= −cp
cv

∂p
∂T

∣∣
v

∂v
∂T

∣∣
p

○1

=
cp
cv

−1
∂T
∂p

∣∣
v

∂v
∂T

∣∣
p

○3

=
cp
cv

∂p

∂v

∣∣∣∣
T

, (34.1)

which, in light of (33.3), proves (33.2).

Alternatively, we ‘attack’ ∂p
∂v

∣∣
s

directly:

∂p

∂v

∣∣∣∣
s

○3

=
−1

∂v
∂s

∣∣
p

∂s
∂p

∣∣
v

○1

= −
∂s
∂v

∣∣
p

∂s
∂p

∣∣
v

○2b
○2b
= −

∂s
∂T |p
∂v
∂T |p
∂s
∂T |v
∂p
∂T |v

○1

=

∂s
∂T

∣∣
p

∂s
∂T

∣∣
v

−1

∂v
∂T

∣∣
p

∂T
∂p

∣∣∣
v

=

(26.3)

cp
T
cv
T

○3

∂p

∂v

∣∣∣∣
T

(34.2)

so we arrive at the rhs40 of (34.1).

It is enlighting to reformulate (33.2) as

vsound =

√
v2

cp
cv

(
− ∂p

∂v

∣∣∣∣
T

)
. (34.3)

Namely, it reflects how unphysical it would be if one of the material stability inequal-
ities, ∂p

∂v

∣∣∣
T
< 0 [seen in (18.2)], were violated: it41 would make the speed of sound

imaginary, which would mean, instead of oscillations sinusoidal in time, exponential
blow-up of any small disturbance – an obvious sign of material instability.

Result (33.2) proves particularly simple for the ideal gas model
[
p(T, v) = RT

v ,

cv = f
2R, cp = f +2

2 R
]
:

vsound =

√
−v2

cp
cv

∂p

∂v

∣∣∣∣
T

=

√
−v2

f + 2

f
(−RT )

v2
=
√

γRT (34.4)

with the customary notation

γ =
f + 2

f
. (34.5)

This result says that, for ideal gases, the speed of sound is independent of v – in other
words, independent of density –, and increases with the square root of temperature.
For example, for room-temperature air (f = 5, see Footnote 9 in page 15),

vsound = 341
m

s
, (34.6)

40Right-hand side.
41The other factors under the square root are positive, cf. (32.4).
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in 1% agreement with measurement (343.5 m
s ). For models differing from the ideal

gas one, vsound depends on v (depends on density). This indicates that, for gases
where molecules have more considerable interactions, prediction (34.4) is somewhat
worse. Indeed, for CO2 for example, it has 4% relative error.

3.7 Concavity of s(e, v)

For the stability of thermodynamical equilibrium, which will be discussed in 2 in
Sect. 4.2, an important ingredient coming from 1 is the concavity property of s(e, v).
Therefore, let us now discuss this property.

If the second derivative (matrix) is strictly negative definite then the function is
concave from above. To this end, let us calculate the second derivative of s(e, v).
The first derivative has already been seen to be [cf. (28.1)]

Ds (e, v) =

(
∂s
∂e

∣∣
v

∂s
∂v

∣∣
e

)
=

(
1
T

p
T

)
(e, v) . (35.1)

Then the second derivative proves to be

D2s (e, v) =

 ∂2s
∂e2

∣∣∣
v

∂2s
∂e∂v

∂2s
∂v∂e

∂2s
∂v2

∣∣∣
e

 =

 ∂ 1
T

∂e

∣∣∣
v

∂ 1
T

∂v

∣∣∣
e

∂ p
T

∂e

∣∣∣
v

∂ p
T

∂v

∣∣∣
e

 =

− 1
T 2

∂T
∂e

∣∣
v

− 1
T 2

∂T
∂v

∣∣
e

∂ p
T

∂e

∣∣∣
v

∂ p
T

∂v

∣∣∣
e

 .

(35.2)

It is equivalent but will be more convenient to investigate whether the matrix

−D2s (e, v) =

 1
T 2

∂T
∂e

∣∣
v

1
T 2

∂T
∂v

∣∣
e

−
(

1
T

∂p
∂e

∣∣
v
− p

T 2
∂T
∂e

∣∣
v

)
−
(

1
T

∂p
∂v

∣∣
e
− p

T 2
∂T
∂v

∣∣
e

)
 =

1

T 2
A (35.3)

is strictly positive definite, where

A ≡

(
A11 A12

A21 A22

)
=

(
∂T
∂e

∣∣
v

∂T
∂v

∣∣
e

p ∂T
∂e

∣∣
v
− T ∂p

∂e

∣∣
v

p ∂T
∂v

∣∣
e
− T ∂p

∂v

∣∣
e

)
. (35.4)

Then it is actually enough to check whether A is strictly positive definite.

A necessary and sufficient criterion to ensure this is Sylvester’s criterion, which in our
case says that A11 > 0 and detA > 0 are the conditions to be fulfilled. A11 > 0
is easily seen via (18.1) and ○1 . Regarding detA > 0 , both material stability



3.8 The consequence of the entropic property on bodies 36

inequalities (18.1)–(18.2) play a role:

detA =
∂T

∂e

∣∣∣∣
v

(
p
∂T

∂v

∣∣∣∣
e

− T
∂p

∂v

∣∣∣∣
e

)
− ∂T

∂v

∣∣∣∣
e

(
p
∂T

∂e

∣∣∣∣
v

− T
∂p

∂e

∣∣∣∣
v

)

= −T

(
∂T

∂e

∣∣∣∣
v

∂p

∂v

∣∣∣∣
e

− ∂p

∂e

∣∣∣∣
v

∂T

∂v

∣∣∣∣
e

)
= −T

∂T

∂e

∣∣∣∣
v

(
∂p

∂v

∣∣∣∣
e

−
∂p
∂e

∣∣
v

∂T
∂v

∣∣
e

∂T
∂e

∣∣
v

)

○4b
= − T︸︷︷︸

>0

∂T

∂e

∣∣∣∣
v︸ ︷︷ ︸

>0

∂p

∂v

∣∣∣∣
T︸ ︷︷ ︸

<0

> 0 : ✓ (36.1)

It is to be noted that a similar argumentation proves that e(s, v) is convex from
above (see Problem 5).

3.8 The consequence of the entropic property on bodies

For a thermodynamical body made of a simple material, the extensive quantities can
be obtained from the specific ones as

V = mv , E = me, S = ms, F = mf , H = mh, G = mg . (36.2)

The relationships among quantities of the material help in giving relationships among
quantities of the body. For instance, if we aim at E(S, V,m) , we can proceed as

E(S, V,m) = me(s, v) = me
(
S
m , V

m

)
. (36.3)

With the aid of (25.7)–(26.1) recalled,

de = T ds− pdv , T =
∂e

∂s

∣∣∣∣
v

, −p =
∂e

∂v

∣∣∣∣
s

, (36.4)

we find, via differentiating composite functions,

∂E

∂S

∣∣∣∣
V,m

= m · ∂e
∂s

∣∣∣∣
v

· 1

m
= T ,

∂E

∂V

∣∣∣∣
S,m

= m · ∂e

∂v

∣∣∣∣
s

· 1

m
= −p , (36.5)
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and for the third partial derivative, usually denoted by µ and called chemical poten-
tial,

µ =
∂E

∂m

∣∣∣∣
S,V

(36.3)

=
∂
[
me
(
S
m , V

m

)]
∂m

∣∣∣∣∣
S,V

= e
(
S
m , V

m

)
+m

∂e

∂s

∣∣∣∣
v

∂ S
m

∂m

∣∣∣∣
S

+m
∂e

∂v

∣∣∣∣
s

∂ V
m

∂m

∣∣∣∣
V

= e+mT ·
(
− S

m2

)
+m (−p) ·

(
− V

m2

)
,

µ = e− Ts+ pv
(29.3)

= g . (37.1)

Having already seen (29.4),42 now we also have the so-called Gibbs–Duhem relation,

dµ = −sdT + vdp . (37.2)

In parallel, (36.5)–(37.1) can be summarized as

dE =
∂E

∂S

∣∣∣∣
V,m

dS +
∂E

∂V

∣∣∣∣
S,m

dV +
∂E

∂m

∣∣∣∣
S,V

dm,

dE = T dS − pdV + µdm, (37.3)

which is the Gibbs relation for a body.

Moreover,

m (e− Ts+ pv)
(37.1)

= mµ, E − TS + pV = mµ,

E = TS − pV +mµ. (37.4)

Beware that (37.4) is quite different from the similarly-looking (37.3). From (37.4),
we also have

S =
1

T
E +

p

T
V − µ

T
m. (37.5)

42Yes, historically, two different names and notations have been introduced for the same quantity.
And yes, like the two other partial derivatives of E(S, V,m) , µ is considered an intensive quantity
– with good reason [cf. (38.8)] – and g is considered a specific extensive quantity – also with good
reason [g = G/m].
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Rearranging (37.3) provides the differential of S(E, V,m) ,

dS =
1

T
dE +

p

T
dV − µ

T
dm. (38.1)

Again, note the essential difference between (38.1) and (37.5).

If we have two bodies – of the same material – that can exchange energy, volume43

and mass while they are insulated from the environment then, along any allowed
process, the totals are constant,

E1 + E2 = Et = const. , =⇒ dE2|pr = − dE1|pr , (38.2)

V1 + V2 = Vt = const. , =⇒ dV2|pr = − dV1|pr , (38.3)

m1 +m2 = mt = const. , =⇒ dm2|pr = − dm1|pr . (38.4)

Then the change of total entropy

S1(E1, V1,m1) + S2(E2, V2,m2) = St(E1, V1,m1, E2, V2,m2) (38.5)

is

dSt|pr = dS1|pr + dS2|pr

(38.1)

=
1

T1
dE1|pr +

p1
T1

dV1|pr −
µ1

T1
dm1|pr

+
1

T2
dE2|pr +

p2
T2

dV2|pr −
µ2

T2
dm2|pr

=

(
1

T1
− 1

T2

)
dE1|pr +

(
p1
T1

− p2
T2

)
dV1|pr −

(
µ1

T1
− µ2

T2

)
dm1|pr . (38.6)

As one consequence of this, total entropy does not change if
1

T1
=

1

T2
,

p1
T1

=
p2
T2

,
µ1

T1
=

µ2

T2
. (38.7)

This fact will come later handy, when discussing processes in 2 , in Sect. 4. Note
that (38.7) is equivalent to

T1 = T2 , p1 = p2 , µ1 = µ2 , (38.8)

i.e., each of the three intensive quantities is the same for the two bodies.

Without proof, we mention here that (38.5) with restrictions (38.2)–(38.4), in other
words,

St|pr (E1, V1,m1) ≡ St(E1, V1,m1, Et − E1, Vt − V1,mt −m1) (38.9)

is concave from above, with a single maximum described by (38.7). It will be proved
for a special limiting case in Sect. 4 where we are going to make use of it.

43Think of a rigid piston separating two gases: if the piston moves then the increase of V1 equals
the decrease of V2.
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3.9 Switch to dimensionless quantities – in general and for
VdW

Similarly to how, in fluid mechanics, rescaling quantities by constants to make them
dimensionless and forming dimensionless combinations of constants are beneficial for
various purposes – realizing similarity among different setups and establishing the
appropriate rescaling of one setup to another, finding a universal common behaviour
of systems with different sizes, and reducing the number of free parameters to the
essentially independent/free parameters for reducing the dimension of the parameter
space to scan for numerical calculations and diagrams –, the effort to reduce the
number of free parameters and to have dimensionless quantities is similarly advan-
tageous in thermodynamics. Before considering the example of the Van der Waals
gas, let us summarize what dimensionful quantities are and how to practically treat
them.

When we walk in a forest, we can find sticks and rods of various size. Similarly, at
home we find pens, pencils, pieces of thread etc. of various size. Then we gradually
invent the abstraction of the set of possible length values. We find that lengths
can be compared whether they are of the same lengths or one is larger than the
other. We can add lengths (one stick as the continuation of the other), subtract
them (backward continuation), multiply them by numbers44, with natural operation
rules (associativity, distributivity etc.). Altogether, we find that the set of possible
length values, denoted here by L, is a one-dimensional real oriented vector space.45
Hereafter, a one-dimensional real oriented vector space is called a measure line, which
is a much shorter and friendlier name46.

For the possible time interval values, we introduce another measure line, denoted
by T. For the possible mass values, yet another measure line, M is needed; and we
will use a fourth measure line, θ, for temperature values.47 Adding a length l and a
time interval t is meaningless (physically, as well as mathematically you cannot add
elements coming from different sets). However, their product and their quotient are
meaningful – mathematically, the product lt lives in the tensorial product of L and
T, LT, which is also a measure line48, and the quotient lives in the tensorial quotient

44Multiplication by integers: repeating a length n times; division by integers: folding a piece of
thread into two, three etc.; multiplication by rational numbers: a multiplication and a division;
irrational numbers: as a limit of rational ones.

45Initially, the set of possible length values contains only positive values but, since we frequently
find it convenient to use space coordinates like x = −3.2 m , we extend it to negative values, too.
‘Oriented’ means here that we have distinguished one half of the vector space as positive, the other
half being the negative one.

46A line used for quantities, that is, for measurement purposes.
47A more classic typography is L, T, M, and Θ – the present typographic choice reflects that,

similarly to the famous mathematical sets R,C,Z,N,Q, the measure lines L,T,M, θ are also famous
sets.

48The tensorial or dyadic product is usually denoted in the way L ⊗ T or L ◦ T but usually there
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of L and T, another measure line L
T . The notions of tensorial product and quotient

may sound new but no need to worry: they embody just the rules we have been
accustomed to since elementary school, e.g., (2l)(4t) = 8lt and (6l)/(2t) = 3l/t . 49

A quotient l/t is an example of a velocity value.50 Similarly, a force value lives
in M L

T2 , where T2 abbreviates TT. 51 A tensorial power can be any real number
so quantities like l

1
2 , l7.38, l

√
2, lπ, l−π are meaningful. Negative powers satisfy

L−p = R/Lp and LpL−p = R , just as expected since, e.g., for two lengths l1, l2,
their quotient l1/l2 is a real number.52 For any positive quantity, e.g., a length l,
one finds l0 = 1 .

Functions like sin, cos, exp, and ln are not meaningful for dimensionful quantities.
For example, when we try to extend the definition of exp,

expx = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · , (40.1)

to dimensionful x – e.g., a length l – then each term on the rhs (see Footnote 40 in
page 34) lives in different vector spaces: the first one in R, the second in L, the third
in L2 etc. so the sum is meaningless. Only combinations

e
l
l0 , ln

l

l0
etc. (40.2)

are meaningful, where l0 is also some length value.53

Now comes a notation we are going to find particularly useful. The fact that a length
value l lives in measure line L will be denoted as ⟨⟨l⟩⟩ = L . Accordingly, with ⟨⟨t⟩⟩ = T
and ⟨⟨m⟩⟩ = M ,

〈〈
l
t

〉〉
= ⟨⟨l⟩⟩

⟨⟨t⟩⟩ = L
T and

〈〈
m l

t2

〉〉
= ⟨⟨m⟩⟩ ⟨⟨l⟩⟩

⟨⟨t2⟩⟩ = ⟨⟨m⟩⟩ ⟨⟨l⟩⟩
⟨⟨t⟩⟩2 = M L

T2 .

In vector spaces, one practically (e.g., for numerical purposes) convenient charac-
terization of vectors happens with the aid of a basis. Namely, any vector v of an
n dimensional vector space can be uniquely characterized, with the aid of linearly
independent vectors vi (i = 1, . . . , n) by n real numbers ci that are the coefficients

is no danger of misunderstanding so we can simply write LT.
49Actually, it is just these rules that define the tensorial product and quotient of vector spaces.
50For velocity vectors, and for dimensionful vectors and tensors in general, the gen-

eralization is natural, see the details in the book T. Matolcsi: Spacetime without ref-
erence frames, Society for the Unity of Science and Technology, Budapest, 2018, ISBN
978-615-80157-3-8 (open access, "Matolcsi_Spacetime_without_Reference_Frames_2018-07-31.pdf" or
"Matolcsi_Spacetime_without_Reference_Frames_2018-07-31_two-page_format.pdf" anywhere on the in-
ternet).

51Mathematics customarily uses such a power notation for the Cartesian product of sets, e.g.,
R2 = R × R , which contains pairs of values, like (3.2, 1.84) . When distinction is needed, one may
write T⟨2⟩ for TT but, as long as misunderstanding is unlikely, we’ll follow the established style T2.

52As a special case, L−1 is actually the dual space L∗ of L.
53Accordingly, “ log p” of a “log p–h diagram” is also meaningless, only versions like

log(p/preference), log(p/1 Pa), log(p/bar) are meaningful.
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in the expansion
∑n

i=1 civi . Now, a measure line is a one-dimensional vector space.
Correspondingly, only one basis vector is needed to have a basis. For example, any
length l can be uniquely expressed, with the aid of a nonzero length lu as l = clu .
Customarily, a basis vector in a measure line is called a unit of measurement. Ac-
cording to the international standard, the notations { }, [ ] are introduced as

{l} = c , [l] = lu . (41.1)

As an example, for a length l = 3.2m , {l} = 3.2 and [l] = m . Unfortunately,
other usages of [ ] can also be found in the context of dimensionful quantities, putting
the unit into the brackets as [m] , or putting the measure line into the brackets as
[L] (or [L]) – sometimes two such different (hence, contradictory) meanings of the
bracket are used on the same page of a book. Here, it will be used only as in (41.1).

Confusing, e.g., the number {l} = 3.2 with l itself – assuming tacitly what the
unit, say, [l] = m , is – is a frequent type of mistake that has resulted54 in death
of people (catastrophe of a Korean Air flight, 1999) and in the waste of 300 million
USD and of substantial scientific and technological effort (loss of the NASA Mars
Climate Orbiter, just in the same year). Everyone should always specify the unit as
well; a quantity is meaningless (and dangerous) without the unit. A unit is not a
decoration. It is a multiplier.

As a brief repetition:

• Any dimensionful quantity lives in a one-dimensional vector space.

• A unit of measurement is a basis vector in such a one-dimensional vector space.

• The customary rules of product and quotient of dimensionful quantities also
apply for the corresponding one-dimensional vector spaces (measure lines).

Units, though hopefully being standardized well enough, are arbitrary in a sense55.
For a given specific problem, however, there may be some distinguished units, defined
by the relevant constants at present. In such a case it is beneficial to use them as
units (and to form, from them, units for other measure lines involved) since these
embody self-scales (characteristic scales or natural scales) for the given situation. In
the lucky case, we can make all our quantities dimensionless via these distinguished
units.

Let us consider the example of the thermal constitutive relationship of the Van der
54https://en.wikipedia.org/wiki/Unit_of_measurement#Real-world_implications (as of

2019-03-02)
55Why is the second defined as the duration of 9 192 631 770 periods of the radiation correspond-

ing to the transition between the two hyperfine levels of the ground state of the caesium-133 atom,
at a temperature of 0K? [Wikipedia: Second (as of 2019-03-03).]
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Waals simple material,

p =
RT

v − b
− a

v2
(42.1)

with positive constants a, b, R. This will actually be directly useful for our later
purposes like in the topic of phases.

A generally applicable strategy is to identify all the appearing quantities and con-
stants as products of powers of the elementary measure lines L, T, M, and θ. For
example, the specific volume v lives in L3

M ,

⟨⟨v⟩⟩ = L3

M
. (42.2)

Then a unit vu is sought in the form

vu = aαv · bβv ·Rγv , ⟨⟨vu⟩⟩ ≡
L3

M
= ⟨⟨a⟩⟩αv ⟨⟨b⟩⟩βv ⟨⟨R⟩⟩γv , (42.3)

where the powers αv, βv, γv are determined from the requirement that the total of
powers of L on the rhs be 3 (the power of L on the lhs), that the total of powers of M
be −1, the total of powers of T be 0, and the total of powers of θ be also 0. Hence,
we solve a set of linear equations for αv, βv, γv. The same procedure is to apply for
pu = aαp · bβp ·Rγp and for Tu = aαT · bβT ·RγT .

Yes, this is lengthy and tiring. Therefore, let us now see an alternative route that
is much shorter. It is shorter partly because we won’t need to identify the L, T, M,
and θ content of the measure lines of the constants and of the quantities.

Let us start by recognizing the difference v − b in (42.1). Such a difference is mean-
ingful only if

⟨⟨v⟩⟩ = ⟨⟨b⟩⟩ . (42.4)

This immediately suggests the straightforward choice

vu = b . (42.5)

Next, an analogous consistency requirement tells us that

⟨⟨p⟩⟩ =
〈〈 a

v2

〉〉
. (42.6)

We can exploit this as

⟨⟨pu⟩⟩ = ⟨⟨p⟩⟩ =
〈〈 a

v2

〉〉
=

⟨⟨a⟩⟩〈〈
v2
〉〉 =

⟨⟨a⟩⟩
⟨⟨v⟩⟩2

(42.4)

=
⟨⟨a⟩⟩
⟨⟨b⟩⟩2

=
⟨⟨a⟩⟩〈〈
b2
〉〉 =

〈〈 a

b2

〉〉
, (42.7)

pu =
a

b2
. (42.8)
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Finally,

⟨⟨p⟩⟩ =
〈〈

RT

v − b

〉〉
, (43.1)

⟨⟨a⟩⟩
⟨⟨b⟩⟩2

=
〈〈 a

b2

〉〉
= ⟨⟨pu⟩⟩ = ⟨⟨p⟩⟩ = ⟨⟨RT ⟩⟩

⟨⟨v − b⟩⟩
=

⟨⟨R⟩⟩⟨⟨T ⟩⟩
⟨⟨b⟩⟩

=
⟨⟨R⟩⟩⟨⟨Tu⟩⟩

⟨⟨b⟩⟩
, (43.2)

⟨⟨Tu⟩⟩ =
⟨⟨a⟩⟩
⟨⟨b⟩⟩2

⟨⟨b⟩⟩
⟨⟨R⟩⟩

=
⟨⟨a⟩⟩

⟨⟨b⟩⟩⟨⟨R⟩⟩
=
〈〈 a

bR

〉〉
, Tu =

a

bR
. (43.3)

Having obtained the distinguished units in either way, we continue with introducing
the nondimensionalized quantities as56

v̌ =
v

vu
, p̌ =

p

pu
, Ť =

T

Tu
. (43.4)

In terms of them, the dimensionless counterpart of (42.1) by replacing v with v̌vu ,
p with p̌pu , and T with Ť Tu is57

p̌pu =
RŤTu

v̌vu − b
− a

(v̌vu)2
,

∣∣∣∣∣ · 1

pu
(43.5)

p̌ =
1

pu
RTu

Ť

v̌b− b
− 1

pu

a

v2u

1

v̌2
=

b2

a
R

a

bR

Ť

b(v̌ − 1)
− b2

a

a

b2
1

v̌2

=
Ť

v̌ − 1
− 1

v̌2
. (43.6)

The result does not contain any dimensionful constant, thus being of a universal
form. Accordingly, instead of plotting p–v diagrams for various values of a, b, R, it is
enough to plot only a single p̌–v̌ diagram. Similarly, instead of running a numerical
calculation many times for various values of a, b, R, you need only a single run
(and then to transform the dimensionless result back to the level of dimensionful
quantities).

In Sect. 3.10, we will see that, for Van der Waals-like models of simple materials
– and, according to measurements in real life as well –, there is a distinguished
thermodynamical state called the critical point, and then the corresponding critical

56In the paper mentioned in Footnote 14 in page 17, a similar notation is used: there, the
dimensionless counterparts are denoted by overbar.

57A general suggestion for such transformations: replace the old objects in terms of the new (and
then rearrange), not vice versa: do not try starting with the new ones and attempting to apply the
old expressions here or there. And it’s not a waste of effort to calculate the inverse transformation:
you will anyway need the inverse direction at the end, i.e., when translating anything you obtained
at the dimensionless level back to the initial level.
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values vc, pc, Tc (which are, for the Van der Waals model, vc = 3b , pc = 1
27

a
b2 ,

Tc =
8
27

a
bR ) provide distinguished units. The corresponding dimensionless quantities

are usually called reduced quantities. In thermodynamics, one usually encounters this
latter way of nondimensionalizing since it can be performed in any model (that has
a critical point) as well as for any real material (whose critical values are known
precisely enough).

As we have seen, all Van der Waals models admit the same nondimensional thermal
constitutive relationship.58 When making their caloric constitutive relationship

e =
f
2
RT − a

v
(44.1)

[see (16.3)] nondimensional with these units59 then the result is

ě =
f
2
Ť − 1

v̌
. (44.2)

One can see that no dimensionful parameters have remained in (44.2), as expected.
However, we can also observe that there remained a free dimensionless parameter,
f . As a consequence, Van der Waals models with different f prove to be inequivalent
in the dimensionless form: the thermal parts are equivalent while the caloric parts
not. Accordingly, not states (see Footnote 58in page 44) but only some of their
quantities may correspond to one another. Different f leads to even qualitatively
different behaviour, as seen in Footnote 17 in page 18.

Here, one can draw a general moral, actually. Namely, just because you made all your
quantities and equations dimensionless, it does not mean that you have eliminated
all free parameters and obtained one universal model. You may have just made the
free parameters dimensionless.60

Nevertheless, nondimensionalization is useful: we can reduce ourselves to the truly
free and truly different parameters.

58This universality has led, in thermodynamics, to the “principle of corresponding states”, which
can be used for models and real-life materials both, and states the expectation that the reduced
thermal constitutive functions be the same for different models/materials. Among Van der Waals
models, this exactly holds, as we have seen. With appropriate care, it can also be used for comparing
other models, and for comparing different real-life materials, within some reasonable approximation.

59In case one uses the critical values vc, pc, Tc for nondimensionalization, it is tempting to use
ec = e(Tc, vc) for making e dimensionless – don’t do it. Instead, realize that ⟨⟨e⟩⟩ = ⟨⟨pv⟩⟩ = ⟨⟨pcvc⟩⟩
and use pcvc as the unit for e. All quantities must be nondimensionalized with respect to the
same set of units. Otherwise you can lose consistency. For example, the entropic property related
∂e
∂v

∣∣∣
T

= T ∂p
∂T

∣∣∣
v
− p [(26.5), (31.1)] can be violated at the dimensionless level. (True story!)

60Remember these words when doing fluid dynamics.
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Finally, some useful formulae: how derivatives can be made dimensionless is illus-
trated in the following two examples.

∂p

∂v

∣∣∣∣
T

=
∂(pup̌)

∂v

∣∣∣∣
T

=
∂(pup̌)

∂v̌

∣∣∣∣
T

· dv̌
dv

= pu
∂p̌

∂v̌

∣∣∣∣
T

· 1
vu

=
pu

vu

∂p̌

∂v̌

∣∣∣∣
T

=
pu

vu

∂p̌

∂v̌

∣∣∣∣
Ť

, (45.1)

∂2p

∂v2

∣∣∣∣
T

=
∂
(
∂p
∂v

∣∣
T

)
∂v

∣∣∣∣∣
T

=
∂
(
pu
vu

∂p̌
∂v̌

∣∣
Ť

)
∂v

∣∣∣∣∣
T

=
∂
(
pu
vu

∂p̌
∂v̌

∣∣
Ť

)
∂v̌

∣∣∣∣∣
T

· dv̌
dv

=
pu

vu

∂
(
∂p̌
∂v̌

∣∣
Ť

)
∂v̌

∣∣∣∣∣
Ť

· 1
vu

=
pu

v2u

∂2p̌

∂v̌2

∣∣∣∣
Ť

. (45.2)

3.10 The Van der Waals model in closer detail

In case of the Van der Waals model (16.3), repeated here for convenience,

p(T, v) =
RT

v − b
− a

v2
, e(T, v) =

f
2
RT − a

v
(45.3)

one of the material stability conditions, ∂p
∂v

∣∣
T
< 0 [recall (18.1)–(18.2)] is not auto-

matically satisfied. If temperature is below a so-called critical value Tc then there
are two specific volume values, determined as the two roots of ∂p

∂v

∣∣
T

= 0, between
which ∂p

∂v

∣∣
T
> 0. This region is therefore physically forbidden. Right at the critical

temperature, these two specific volume values merge into one, the critical specific
value vc. Tc and vc can be obtained from the set of equations

∂p

∂v

∣∣∣∣
T

= 0 ,
∂2p

∂v2

∣∣∣∣
T

= 0 , (45.4)

the latter expressing that the two ∂p
∂v

∣∣
T

= 0 specific volume values, i.e., the local
minimum and the local maximum, have merged into a point of inflection. The
solution is not hard to obtain:

vc = 3b , Tc =
8

27

a

bR
, pc ≡ p(Tc, vc) =

1

27

a

b2
. (45.5)

For a given T < Tc, there is not a single v for a given p. Rather, there is one v value
to the left of the local minimum, there is one between the local minimum and the
local maximum, and there is one to the right of the local maximum. The second of
these three possibilities is unphysical but the other two are valid – and describe two
different phases of the same material. To the left of the local minimum is the liquid
phase and to the right of the local maximum is the vapour phase. One phase is such
a (largest connected) domain of the state space of the material within which T and
p together determine a state uniquely. (Hence, determine a v uniquely.)
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3.11 Thermoelasticity of solids – 1D variables and mechanical
aspects

Solids – as the name suggests – are, as our experience since childhood shows, “solid”.
As a kind of zeroth order approximation, they do not change their size and shape
(think of the table, the wall, the pavement etc.). As a next, first order, approxima-
tion, we recognize that they can exhibit small size and shape changes. The change
of volume is not sufficient to describe the related phenomena: the necessary forces
and power depend on directions as well. For example, if you press or twist a sponge
in various ways, its response will be direction dependent. As a special case, twist-
ing may leave the volume invariant but will nevertheless require force and power
to exert. For characterizing the shape changes – the geometric state changes, to
which mechanical changes correspond – volume, a scalar quantity, is not enough but
a tensor is needed – to which a tensorial description of forces corresponds.

Here, we start with a simplified special treatment applicable for a practically impor-
tant class of processes: the so-called uniaxial ones. If you elongate a rubber thread,
it demonstrates that, in a uniaxial process, it is the length of the rubber thread that’s
important (the orthogonal directions and size changes not). In the subsequent few
sections, we consider a given straight solid sample of cylindrical or prismatic shape,
pulled/pressed only longitudinally (uniaxial loading). (The full, 3D, treatment will
follow in Sect. 3.14.)

We intend to remain in 1 so space independence of quantities is assumed along the
sample.

Although being in 1 , we frequently parametrize changes of solids by time (i.e.,
in applications, measurement data are usually parametrized by time). Moreover,
parametrizing by time will be a good occasion for practicing for the forthcoming 2
aspects and for preparing ourselves to describe inherently 2 phenomena.

Accordingly, along a process, length will be treated as a function of time: l = l(t) ,
and will be called the instantaneous length (or current length).

With overdot denoting the time derivative d
dt , let us introduce

L = l̇/l , (46.1)

the relative length change rate (or strain rate).61

A difference between solids and liquids–gases is that solids have an own structure,
somehow (microscopically-mesoscopically) encoded in the material: there is a distin-
guished length, size, shape: if undisturbed, unstressed, relaxed, then the body takes

61The 3D generalization of this quantity is the velocity gradient tensor, see Sect. 3.14 for its use
in 2 and Sect. 5 for its full understanding in 4 .
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this relaxed length lR. For example, an elongated and then released rubber thread
returns to its distinguished, preferred, favourite, length.

In many situations of solids, l(t) ≈ lR , in other words, |l(t)− lR|/lR ≪ 1 . This is
the so-called small-deformation regime. Hereafter, we will frequently remain in this
regime. Then L ≈ l̇/lR , the cross-section area A is nearly constant, A ≈ AR , and
mass density is also approximately constant, ϱ ≈ ϱR .

Elasticity, explained in the uniaxial framework, is a phenomenon when a force is
needed to keep l at an l ̸= lR , which force depends on the relationship between
l and lR. For example, larger elongation of a rubber thread requires larger force.
Elastic deformedness is the geometric state variable

D = ln
l

lR
(47.1)

(this is a Hencky-like definition).

A consequence is

L
(46.1)

=
l̇

l

(47.1)

=

(
eDlR

)·
l

=
ḊeDlR

l

(47.1)

= Ḋ : L = Ḋ. (47.2)

In the small-deformation regime, because of the first-order Taylor expansion

ln(1 + δ) ≈ δ (|δ| ≪ 1) , (47.3)

D = ln
lR + (l − lR)

lR
= ln

(
1 +

l − lR
lR

)
≈ l − lR

lR
. (47.4)

For small deformedness, the linear (in D) or Hooke model of elasticity reads

σel = ED (|D| ≪ 1) (47.5)

for the elastic stress σel = Fel/A (Cauchy stress), where Fel is the elastic force, and
E is Young’s modulus. In words, the Hooke model says that elastic stress depends
on l − lR linearly.

A good62 finite deformedness extension of (47.5) is Hencky’s elasticity model,
writable in our notations as

σel =
ϱ

ϱR
ED. (47.6)

62It (and its 3D version) is frequently a quite good model up to l
lR

≈ 1.4 [here, think of
rubber and elastomer polymers, not metals or rocks], according to Anand and others (Anand
1979, DOI:10.1115/1.3424532; Beatty–Stalnaker 1986, DOI:10.1115/1.3171862; Horgan–Murphy
2009, DOI:10.1016/j.mechmat.2009.03.001).

https://doi.org/10.1115/1.3424532
https://doi.org/10.1115/1.3171862
https://doi.org/10.1016/j.mechmat.2009.03.001
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Mostly, we will stay in the small deformation regime. There the cross-section is
approximately constant, thus σel ≈ Fel/AR .

Next, let us introduce some quantities related to measurements:

displacement is

ut0(t) = l(t)− l(t0) , (48.1)

where t0 is an initial time chosen by the experimenter (called reference time).

Strain is63

εt0(t) =
ut0(t)

l(t0)
. (48.2)

More closely, this is called the Cauchy strain, and many other versions of strain64

have also been introduced historically. Nevertheless, none of them are thermody-
namical state variables, since they depend on an arbitrary auxiliary quantity, t0.
Both displacement and strain belong to the same class as work and heat: they are
change quantities, related to a part of the process corresponding to a time interval –
while a state quantity corresponds to a single instant.

Usually and tacitly it is assumed that l(t0) = lR , in other words, D(t0) = 0 ,
but this is not always true. In fact, in most uniaxial experiments, a (small but
non-negligible) initial pre-stress is applied to ensure that subsequent loading of the
sample will be uniform across the cross-section of the sample. And, more remarkably,
the measurement method ASR (Anelastic Strain Recovery) is just based on the fact
that a rock sample is prestressed at, say, 600 m depth and when, by drilling, it is
brought to Earth surface, its expansion towards the relaxed state is measured, from
which the original stress condition at the 600 m depth is recovered.

In the small-deformation approximation,

L(t)
(46.1)

=
l̇(t)

l(t)
≈ l̇(t)

l(t0)
=

u̇t0(t)

l(t0)
= ε̇t0(t) , (48.3)

εt0(t) =

ˆ t

t0

ε̇t0
(
t̃
)
dt̃ =

ˆ t

t0

L
(
t̃
)
dt̃

(47.2)

=

ˆ t

t0

Ḋ
(
t̃
)
dt̃ = D(t)−D(t0) : (48.4)

63Usually, t0 is not displayed. Here, we will find it important to display it.

64Like the Green–Lagrange one, 1
2

l(t)2−l(t0)
2

l(t0)2
= 1

2
l(t)+l(t0)

l(t0)
l(t)−l(t0)

l(t0)

small
def.
≈ l(t)−l(t0)

l(t0)
= εt0 (t) ,

and the Hencky one, ln
l(t)
l(t0)

= ln
l(t0)+[l(t)−l(t0)]

l(t0)
= ln

[
1 +

l(t)−l(t0)
l(t0)

] small
def.
≈ l(t)−l(t0)

l(t0)
= εt0 (t) .
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εt0(t) = D(t)−D(t0) (49.1)

is the small-deformation relationship between strain and elastic deformedness.

Thermal expansion is the next-level observation when we realize in practice that lR
is temperature dependent: lR = lR(T ) .

α =
dlR/dT

lR(T )
(49.2)

is the linear thermal expansion coefficient. It’s not necessarily constant, but, for
small temperature changes, it can usually be assumed constant.65

Then, a consequence is the generalization of (47.2),

L =
l̇

l

(47.1)

=

(
eDlR

)·
l

=
ḊeDlR

l
+

eD ˙lR
l

(47.1) twice
= Ḋ +

1

lR
˙lR = Ḋ +

1

lR

dlR
dT

dT

dt
,

L = Ḋ +

(49.2)

αṪ . (49.3)

As can be seen, this is valid for finite deformation and nonconstant α in general.
However, beware: in 3D, the generalization of this result is similarly simple only
for small deformation: for finite deformation, it has a quite more complicated form
[because, for tensors, a product is not commutative: AB ̸= BA in general so, for
example, AȦ ̸= ȦA and

(
eD
)· ̸= ḊeD ].

In the small-deformation approximation, the generalization of (48.3)–(49.1) is

L(t) =
l̇(t)

l(t)
≈ l̇(t)

l(t0)
=

u̇t0(t)

l(t0)
= ε̇t0(t) , (49.4)

εt0(t) =

ˆ t

t0

ε̇t0
(
t̃
)
dt̃ ≈

ˆ t

t0

L
(
t̃
)
dt̃

(49.3)

=

ˆ t

t0

(
Ḋ + αṪ

)(
t̃
)
dt̃ , (49.5)

εt0(t) =
[
D(t)−D(t0)

]
+ α

[
T (t)− T (t0)

]
, (49.6)

εt0(t) = D(t)−D(t0) + α∆Tt0(t) (49.7)

with the deviation of temperature

∆T t0(t) = T (t)− T (t0) (49.8)

from the reference temperature T (t0).

To summarize:
65Analogously, Young’s modulus E can also be temperature dependent, and it’s our decision

whether we neglect this temperature dependence.
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• elastic deformedness D
◦ is a thermodynamical state variable,
◦ is not directly measurable (unfortunately);

• strain εt0
◦ is not a thermodynamical state variable (since it’s reference time dependent),
◦ is directly measurable,
◦ contains an elasticity related change as well as a thermal expansion part.66

If – but only if – D(t0) = 0 , i.e., l(t0) = lR , then one can write

D(t) = εt0(t)− α∆Tt0(t) , (50.1)

σel

(47.5)

= Eεt0 − Eα∆Tt0 , (50.2)

expression (50.2) being known as the Duhamel–Neumann formula. It is usually
interpreted as an extension to Hooke’s law, however, in the language of D we do not
need to extend anything in Hooke’s law. It seems to be an extension only in the
language of εt0 .

On the other side, internal energy does need a – thermal expansion induced – tem-
perature dependent extension of elastic energy, as shown in the next section.

Actually, in the literature, the Hooke, the Hencky, and other elasticity models are
also written in terms of εt0 , assuming tacitly that the initial state is the relaxed one
[in other words, D(t0) = 0 ]. Here, we work in terms of D, a thermodynamical state
variable. Thus we do not need any such auxiliary assumption.

3.12 Thermoelasticity of solids – 1D thermodynamical as-
pects

The formula for ‘infinitesimal’ work is, as known from mechanics:

đW = F dl . (50.3)

Its density version is

đW/V = (F dl)/V = (F dl)/(Al) = (F/A)(dl/l) = (F/A)
(
l̇dt/l

) (46.1)

= σLdt ;

(50.4)

66When plastic changes also occur then there is a plasticity related expansion part as well in εt0 ,
as will be seen in Sect. 4.11.
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and the specific version is

đw =
1

ϱ
σLdt . (51.1)

As a comment, by (49.4), we also have

đw =
1

ϱ
σdεt0 (51.2)

although, as we have seen, this is misleading since, although one could use εt0 as a
variable, it is not a state variable.

Hereafter, we stay in the small-deformation regime.

Let us make a comparison with the formula of ‘infinitesimal’ specific work seen for
simple materials, đw = −pdv : σ here is −p there; moreover, here

dv =
dV

m
=

dV

ϱV
=

1

ϱ

dV

V
=

1

ϱ

ARdl

ARl
=

1

ϱ

dl

l
=

1

ϱ

l̇dt

l
=

1

ϱ
Ldt (51.3)

so the correspondence with đw = −pdv is accurate.67

The specific working rate is

∗w ≡ đw
dt

=
1

ϱ
σL. (51.4)

Here, we consider stress of elastic origin only. Then

∗w =
1

ϱ
σelL =

1

ϱ

(47.5)

ED

(49.3)(
Ḋ + αṪ

)
=

E

ϱ
DḊ +

1

ϱ
αEDṪ = ėel(D) +

αE

ϱ
DṪ (51.5)

with specific elastic energy

eel(D) =
E

2ϱ
D2 . (51.6)

In parallel, we hope to have (26.2) of simple materials, repeated here for convenience,

đq = T ds , (51.7)

to be valid for solids as well. This, put together with (51.5) and the expectation (for
any process)

de = đq + đw (51.8)
67In fact, the correspondence can be found perfect for finite deformation, too, in the framework

shown in Sect. 3.14.
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determines e(T,D) and s(T,D) essentially uniquely68 if, in order to have a simple
model, we wish a constant specific heat capacity cσ=0 = cD=0 (denoted hereafter in
short by c), which is an analogue of cp, more closely, of cp=0:

e(T,D) = cT +
αE

ϱ
TD + eel(D) = cT +

αE

ϱ
TD +

E

2ϱ
D2 , (52.1)

s(T,D) = c ln
T

Taux
+

αE

ϱ
D, (52.2)

where Taux is an arbitrary auxiliary constant with the dimension of temperature,
⟨⟨Taux⟩⟩ = ⟨⟨T ⟩⟩ = θ – recall that s is undetermined up to an additive constant and
choosing another Taux is equivalent to shifting s by an additive constant.

Therefore, we have (52.1) as the caloric constitutive function, (47.5) as the thermal
one, and (52.2) as the specific entropy with which this model for solids is entropic.

It is a good idea to check69 whether c above is cD=0, as promised:

cD=0 =
đq
dT

∣∣∣∣
D=0

(51.7)

= T
∂s

∂T

∣∣∣∣
D=0

(52.2)

= T
c

T
= c : ✓ . (52.3)

Moreover, it is worth verifying whether (52.1)–(52.2) fulfil (51.8):

de
?
=

(51.8)

T ds + ∗wdt , (52.4)

cdT +
αE

ϱ
DdT +

αE

ϱ
T dD +

E

ϱ
DdD

?
= T

(52.2)(
c

T
dT +

αE

ϱ
dD

)
+

(51.5)

E

ϱ
DdD +

αE

ϱ
DdT,

(52.5)

which is an equality indeed.

Thermal expansion is a phenomenon, or special process type, when a solid is
in stressless state during a time interval but changes its size because of change in
temperature. In virtue of (47.5), σ = 0 imposes D = 0 during the time interval,
implying Ḋ = 0 , (49.3) tells

L =
l̇

l
= αṪ , (52.6)

size changes due to temperature change. In fact, l = lR during such a process. In
small-deformation approximation, if t1, t2 are two instants within the time interval

68Uniquely except for the usual unavoidable additive freedom in s, covered here by the freedom
in Taux (see below); the freedom in e up to an additive constant is fixed by choosing e(0, 0) = 0 .

69Checking is always a good idea.
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of free expansion (or contraction, naturally), then

α[T (t2)− T (t1)] =

ˆ t2

t1

αṪ (t)dt
(52.6)

=

ˆ t2

t1

l̇

l
(t)dt ≈

ˆ t2

t1

l̇(t)

l(t1)
dt =

l(t2)− l(t1)

l(t1)
:

(53.1)

a finite length change is proportional to temperature change.

Thermal stress is when length change is prohibited but temperature changes. Pro-
hibited length change imposes L = 0 , with which (49.3) yields

Ḋ = −αṪ , (53.2)

EḊ = −αEṪ , (53.3)
(47.5)

σ̇ = −αEṪ , (53.4)

integrating which between any two instants during the process relates the change of
stress to change of temperature:

∆σ = −αE∆T . (53.5)

Hence, change of temperature induces stress if initially there was no stress. This
stress is actually of elastic nature: the body cannot take its relaxed, preferred, size
so elastic stress emerges.

The Joule–Thomson effect is the third special type of process we consider here.
This happens when the process is adiabatic, in other words, isentropic [see (51.7)].70
By (52.2), while stress changes [or, while D changes, cf. (50.4)], that is necessarily
accompanied by temperature change: in change rate form,

ṡ|s = 0 , c
Ṫ
∣∣∣
s

T

(52.2)

= −αE

ϱ
Ḋ
∣∣∣
s
, Ṫ

∣∣∣
s
= −αE

ϱc
T Ḋ

∣∣∣
s
, (53.6)

and in change form,

s(T2, D2) = s(T1, D1) , (53.7)

c ln
T2

Taux
+

αE

ϱ
D2

(52.2)

= c ln
T1

Taux
+

αE

ϱ
D1 , (53.8)

c ln
T2

T1
= −αE

ϱ
(D2 −D1) , (53.9)

T2 = T1e−
αE
ϱc (D2−D1) = T1e−

α
ϱc (σ2−σ1) (53.10)

70For instance, fast enough mechanical experiments on a sample surrounded by nonmoving air
can be quite such processes.
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or, approximately,

T2 − T1 = T1
T2 − T1

T1

(47.3)

≈ T1 ln

(
1 +

T2 − T1

T1

)
= T1 ln

T2

T1

(53.9)

= −T1
αE

ϱc
(D2 −D1)

= −T1
α

ϱc
(σ2 − σ1) . (54.1)

In words, stretching induces cooling and pressing induces warming. Observe that
this is a completely reversible process: by going back to initial stress, temperature
returns to the initial value. This temperature change is not related to heat but to
mechanical power.

As seen later, this is only one possible cause of warming during pressing: rheological
changes and plastic changes also lead to warming. The two latter effects are irre-
versible, as it turns out. In practice, it is hard to distinguish / separate the three
possible sources of warming. On the other side, if the constants ϱ, c, E, α are known
then we can separate the Joule–Thomson part from temperature change, thus being
able to observe the presence of rheology or the starting of plastic change by mon-
itoring temperature. Measuring temperature of the sample during a process, and
determining the thermodynamics-related quantities c, α, are therefore very valuable
parts of mechanical experiments.

Figure 54.1 Stress (black) and temperature (grey) as functions of time, measured during
uniaxial stretching of a plastic sample. During the second loading-unloading part (sharp up
and down in stress), temperature decreases and then returns (Joule–Thomson effect). During
the third – and final – loading, temperature decreases initially again, but when plastic change
begins (when the stress curve shows a small ‘hesitation’ and continues less steeply), temperature
starts to increase: plasticity induced dissipative warming is much stronger than Joule–Thomson
related cooling. (For further details on the experiment, consult paper DOI:10.3311/PPci.8628.)

https://doi.org/10.3311/PPci.8628
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Figure 55.2 Snapshots taken by a thermal camera about the sample during the same exper-
iment. The sample is vertical and its – somewhat thinner – medium part is monitored by the
standing rectangle. Temperature values at the crosshairs are displayed numerically with labels
“1.p” and “2.p”. The first figure shows the initial state of essentially homogeneous temperature.
In the second, the Joule–Thomson cooling is observable. In the third snapshot, heat dissipation
appears due to plastic change, and in the fourth the plastic change reaches the whole thinner
part of the sample. Finally, failure occurs.

3.13 Thermoelasticity of solids – the effective Young’s mod-
ulus

A typical measurement of Young’s modulus is to start from unstressed, i.e., relaxed,
state71 and, by governing either stress σ or strain εt0, the ratio of measured changes
in stress and in strain approximates

E|pr =
dσ|pr

dεt0|pr
. (55.1)

The notation |pr is to remind us that the outcome – called hereafter effective Young’s
modulus – is process dependent. For example, the two most important cases are the
isothermal process and the adiabatic (here, equivalently: isentropic) one. A slow
enough process is expected to be approximately isothermal – there is enough time
for temperature to equilibrate with the environment – while a fast enough one may
be nearly adiabatic.

For any type of process,

E|pr =
dσ|pr

dεt0|pr

(47.5)

= E
dD|pr

dεt0|pr

(50.1)

= E
dεt0|pr − α dT |pr

dεt0|pr
= E

(
1−

α dT |pr

dεt0|pr

)
.

(55.2)

The isothermal special case is easy to evaluate: dT |pr = dT |T = 0 so

E|T = E . (55.3)
71Some pre-stress is usually applied but let us now generously forget about that.
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The adiabatic/isentropic case requires a longer calculation: we need to determine
dT |pr ≡ dT |s in terms of dεt0|pr ≡ dεt0|s . In an isentropic process, ds|pr = 0 ,
which, in light of (53.6), gives

c dT |s
T

= −Eα

ϱ
dD|s

(50.1)

= −Eα

ϱ
( dεt0|s − α dT |s) = −Eα

ϱ
dεt0|s +

Eα2

ϱ
dT |s ,

(
c

T
− Eα2

ϱ

)
dT |s = −Eα

ϱ
dεt0|s ,

dT |s
dεt0|s

=
−Eα

ϱ

c
T − Eα2

ϱ

=
−EαT

ϱc

1− Eα2T
ϱc

. (56.1)

Hence,

E|s
(55.2)

= E

(
1−

α dT |s
dεt0|s

)
= E

(
1 +

Eα2T
ϱc

1− Eα2T
ϱc

)
= E

1− Eα2T
ϱc + Eα2T

ϱc

1− Eα2T
ϱc

=
E

1− Eα2T
ϱc

. (56.2)

Therefore, the effective Young’s modulus is process dependent (T dependent).

The process dependent dimensionless correction term Eα2T
ϱc is, at room temperature

T = 293K , well below 1 % for many solids (steel: 2.5 · 10−3, granite: 3.5 · 10−4,
polyamide-6 plastic: 2.4·10−3), making the adiabatic and isothermal Young’s moduli
approximately equal.

It can be shown that, if Eα2T
ϱc ≪ 1 , |∆Tt0 | ≪ T , and D(t0) = 0 , then

σ|s = ED ≈ E|s εt0|s and e|s ≈ cT (t0) +
E|s
2ϱ

(εt0|s)
2
. (56.3)

Here, the first result is in accord with that E|s is the isentropic effective Young’s
modulus. In parallel, the second result says that, up to an additive constant72,
specific internal energy looks like specific elastic energy, written with E|s and εt0
rather than E and D [cf. (51.6)].

Note that, in the isothermal case, with D(t0) = 0 ,

εt0|T
(50.1)

= D|T =⇒ e|T
(52.1)

= cT (t0) +
αE

ϱ
T (t0)εt0|T +

E

2ϱ
(εt0|T )

2
.

(56.4)

This expression is of the form ‘constant plus quadratic’ only if the middle term is
negligible, requiring

∣∣εt0|T ∣∣≫ αT (t0) . Remarkably, in the isothermal case, energy

72If one dares to consider T (t0) a ‘constant’.
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changes not only in the form of mechanical work but, to compensate the Joule–
Thomson effect originated temperature change, in form of heat as well. We can see
that, in mechanics, some consequences of α ̸= 0 are negligible while some others are
more relevant.

3.14 Thermoelasticity of solids – 3D variables

In the forthcoming three-dimensional treatment, we consider isotropic solid materials
only, meaning that there are no direction dependent material properties.

Tensors in a three-dimensional Euclidean vector space are linear vector-to-vector
functions.73 With the aid of an orthonormal basis in the Euclidean vector space, a
tensor can be represented as a 3× 3 matrix. For example, during uniaxial processes,
taking the first basis vector in the direction of the loading (in the longitudinal/axial
direction) – then the two other basis vectors are orthogonal to the direction of the
loading (transversal/lateral directions). In this basis, the tensors involved have par-
ticularly simple and convenient matrix form:

{σ}uniax =

σ 0 0
0 0 0
0 0 0

, {εt0}uniax =

εt0 0 0
0 ε⊥t0 0
0 0 ε⊥t0

, (57.1)

where σ is what was simply σ in the 1D treatment (Sect. 3.11) and there are no
other stress components as there is pulling/pressing in one direction only; while in
strain transversal components are also possible – but are equal because of isotropy
of the material and the lack of transversal forces/actions. Similarly,

{D}uniax =

D 0 0
0 D⊥ 0
0 0 D⊥

, {L}uniax =

L 0 0
0 L⊥ 0
0 0 L⊥

, (57.2)

Without entering the technical details of the general-level definitions of εt0 , D, and
L, the uniaxial case is easy to present:

D
see (47.1)

= ln
l

lR
, L

see (46.1)
=

l̇

l
, εt0(t)

see (48.2)
=

ut0(t)

l (t0)
, (57.3)

D⊥
see (47.1)

= ln
l⊥

l⊥R
, L⊥

see (46.1)
=

l̇⊥

l⊥
, ε⊥t0(t)

see (48.2)
=

u⊥
t0(t)

l⊥(t0)
, (57.4)

where l , lR, l (t0), ut0(t) are the longitudinal counterparts of the corresponding 1D
quantities, and l⊥, l⊥R, l⊥(t0), u⊥

t0(t) are understood in any fixed transversal direction

73Please refresh your knowledge concerning the mathematical notions appearing in this section.
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– the definitions (57.3)–(57.4) are independent of the chosen transversal direction as
being dependent only on ratios of transversal quantities.

As in the 1D treatment, here we also stay in the small-deformation regime.74 The
3D generalizations of (49.3) and (49.4) are

LS = Ḋ+ αṪ1 , (58.1)

ε̇t0 = LS , (58.2)

where

LS =
L+ LT

2
(58.3)

is the symmetric part of L, defined using its transpose LT, and 1 is the 3D unit
tensor to which thermal expansion is proportional – as part of all material properties,
thermal expansion has also been assumed isotropic so the thermal expansion change
rate tensor αṪ1 is proportional to the only (apart from a scalar multiplier) isotropic
tensor, 1. At this place, it is to be mentioned that, in three space dimensions, D is
a symmetric tensor75, εt0 is also symmetric and, for simple enough solids (like the
models treated here) σ is symmetric, too, while L is, in general, not symmetric.76

Analogously to (49.5)–(49.8), integrating (58.2) with (58.1) plugged in, we find

εt0(t) =
[
D(t)−D(t0)

]
+ α

[
T (t)− T (t0)

]
1 , (58.4)

εt0(t) = D(t)−D(t0) + α∆Tt0(t)1 (58.5)

with ∆T t0(t) = T (t)− T (t0) .

In the uniaxial special case,

Ḋ + αṪ = L = ε̇t0 , (58.6)

Ḋ⊥ + αṪ = L⊥ = ε̇⊥t0 . (58.7)

The trace of a tensor can be computed as the sum of diagonal matrix elements in its
matrix form taken in any orthonormal basis. Accordingly, in the uniaxial example,

trσ = σ , trD = D + 2D⊥ etc. (58.8)

74Actually, (58.2) will not need this approximation, and (58.1) will also hold for finite deformations
if LA = 0 and the principal directions of LS coincide with those of D.

75Beware that, traditionally, the letter D frequently denotes something else: it is used as a
shorthand for LS. Those traditions have occupied all reasonable letters, not leaving room for
introducing further quantities without a clash between notations.

76With Cartesian coordinate indices i, j = 1, 2, 3, Lij = ∂jvi (velocity gradient) and
(
εt0

)
ij

=

1
2

[
∂j(ut0 )i + ∂i(ut0 )j

]
.
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The deviatoric part (dev) and the spherical part (sph) part of a tensor are defined as
follows (shown on the example of D):

Dsph =
1

3
(trD)1 , Ddev = D−Dsph , hence, e.g., 1sph = 1 , 1dev = 0 .

(59.1)

It is easy to see that, as consequences of the definition, the trace of the deviatoric
part of a tensor is zero, and the trace of the spherical part equals the trace of the
original tensor, e.g.,

trDdev = 0 , trDsph = trD , since (59.2)

trDsph = tr
[
1

3
(trD)1

]
=

1

3
(trD) tr [1] =

1

3
(trD) · 3 = trD ; (59.3)

trDdev = tr
(
D−Dsph) = trD− trDsph

(59.3)

= trD− trD = 0 . (59.4)

The decomposition of a tensor to deviatoric and spherical part is unique and can
be determined easily by computing the trace of the tensor to be decomposed. This
decomposition is distinguished also from the aspect that it is orthogonal77 in the
sense that the product of a deviatoric tensor and a spherical one is traceless,

tr
(
AdevBsph) = 0 (59.5)

since

tr
(
AdevBsph) = tr

[
Adev 1

3
(trB)1

]
=

1

3
(trB) tr

[
Adev1

]
=

1

3
(trB) tr

[
Adev] = 0.

(59.6)

As a consequence,

tr(AB) = tr
[(
Adev +Asph)(Bdev +Bsph)] (59.5)

twice
= tr

[
AdevBdev]+ tr

[
AsphBsph] .

(59.7)

With the antisymmetric part

BA =
B−BT

2
(59.8)

77It is actually an orthogonal decomposition with respect to the scalar product 1
2
tr
(
ATB

)
of

tensors A,B , where T denotes the transpose as seen before.
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defined analogously to (58.3), further special properties follow from the identities(
BT)T = B , (60.1)

trBT = trB , (60.2)(
BS)T = BS ,

(
BA)T = −BA , (60.3)

(AB)
T
= BTAT , (60.4)

tr (AB) = tr (BA) . (60.5)

Namely, the following ones:

trBS = trB , trBA = 0 , (60.6)

tr
(
AS BA) = tr

[
AS 1

2

(
B−BT)] = 1

2

[
tr
(
ASB

)
− tr

(
ASBT)] (60.7)

=
1

2

[
tr
(
ASB

)
− tr

(
BTAS)] = 1

2

[
tr
(
ASB

)
− tr

(
ASB

)]
= 0 ,

tr
(
ASB

) (60.7)

= tr
(
ASBS) . (60.8)

The deviatoric–spherical decomposition is distinguished not only mathematically
but also in the kinematic (motion related) aspects of materials78, as well as for
mechanical and thermodynamical behaviour of isotropic materials whose properties
appear particularly simple in this separation.

In the uniaxial example, applying (58.8), we find79

{
Ddev}

uniax =

 2
3 (D −D⊥) 0 0

0 − 1
3 (D −D⊥) 0

0 0 − 1
3 (D −D⊥)

, (60.9)

{
Dsph}

uniax =

 1
3 (D + 2D⊥) 0 0

0 1
3 (D + 2D⊥) 0

0 0 1
3 (D + 2D⊥)

, (60.10)

78One can show that, due to the logarithmic definition of D – the 3D generalization of (47.1)
–, Ddev is zero for volume preserving geometric shape changes, describing thus the ‘torsion-like’
part of the extension while Dsph characterizes the isotropic (direction independent) part of the
extension, and measures the volume change with respect to the relaxed volume.

79You can check them immediately: is the sum equal to (57.2)? Is {Ddev}uniax traceless? Is
{Dsph}uniax a multiple of the unit matrix?
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and

{
σdev}

uniax =

 2
3σ 0 0
0 − 1

3σ 0
0 0 − 1

3σ

, (61.1)

{
σsph}

uniax =

 1
3σ 0 0
0 1

3σ 0
0 0 1

3σ

. (61.2)

In the small-D regime – which, in an arbitrary Cartesian coordinate system, means
|Dij | ≪ 1 for all components Dij – trD measures the relative volume change with
respect to the relaxed volume. This is easy to check for a uniaxial process of a body
with a square cuboid (square box) relaxed shape, with relaxed longitudinal length
lR and transversal edges with relaxed length l⊥R. Then, at any time,

D
(57.3)

= ln
l

lR
, D⊥

(57.3)

= ln
l⊥

l⊥R
, (61.3)

while the relative volume change with respect to the relaxed volume is

V − VR

VR
=

V

VR
− 1 =

l (l⊥)2

lR(l
⊥
R)

2
− 1

(61.3)

= eD
(
eD

⊥)2
− 1 = eD e2D

⊥
− 1

= eD +2D⊥
− 1

(58.8)

= etrD − 1

small
def.
≈ (1 + trD)− 1 = trD .

(61.4)

Similarly,

V − Vt0

Vt0

small
def.
≈ tr εt0 . (61.5)

Originating from these, the spherical part of a tensor is sometimes called the volu-
metric part.80

3.15 Thermoelasticity of solids – 3D mechanical aspects

As mentioned at the beginning of Sect. 3.14, here, only isotropic materials are treated.
Within this context, the 3D version of Hooke’s law (47.5) is

σdev
el = EdevDdev , (61.6)

σsph
el = EsphDsph , (61.7)

80Actually, V
VR

= etrD holds exactly and in general, not only in the small-deformedness regime
and not only in uniaxial processes.
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where the conventional notations of the coefficients are

Edev = 2G, Esph = 3K (62.1)

and G is named shear modulus and K called bulk modulus. An equivalent form of
(61.6)–(61.7) is

σel = EdevD+
(
Esph − Edev

)
Dsph , (62.2)

in which form the coefficients are conventionally denoted as

Edev = 2µ, Esph − Edev = 3λ (62.3)

and µ, λ are named Lamé coefficients.81 To see that (62.2) follows from (61.6)–(61.7)
take the sum of (61.6) and (61.7); for the reverse direction, take the dev of (62.2) to
obtain (61.6) and take the sph of (62.2) to obtain (61.7).

In short, therefore, it is enough to write

σel = EdevDdev + EsphDsph . (62.4)

If – but only if – D(t0) = 0 then, analogously to (50.1)–(50.2), one can write

D(t) = εt0(t)− α∆Tt0(t)1 , (62.5)

σel = Edevεdev
t0 + Esphεsph

t0 − Esphα∆Tt01 , (62.6)

expression (62.6) being the full 3D Duhamel–Neumann formula.

In the special case of uniaxial processes, (61.6)–(61.7) get simplified to two one-
component equations. (61.7) is nontrivial in the diagonal components, each of which
telling

1

3
σ = Esph 1

3

(
D + 2D⊥) , σ = Esph(D + 2D⊥) . (62.7)

(61.6) is also nontrivial only in the diagonal components; the second and third being
identical and actually being proportional to the first – hence, the three each tell

2

3
σ = Edev 2

3

(
D −D⊥) , σ = Edev(D −D⊥) . (62.8)

81Yes, G = µ runs under two notations and two names. Yes, this G is not the Gibbs potential,
and this µ is not the chemical potential or specific Gibbs potential.



3.16 Thermoelasticity of solids – 3D thermodynamical aspects 63

(62.7)–(62.8) are equivalent to82

σ = ED , E =
3EsphEdev

2Esph + Edev , (63.1)

D⊥ = −νD , ν =
Esph − Edev

2Esph + Edev . (63.2)

(63.1) reproduces the 1D Hooke’s law (47.5) and explains how Young’s modulus E
emerges as a combination of the elementary coefficients Edev, Esph. In parallel, (63.2)
defines Poisson’s ratio ν.

The classical interpretation of Poisson’s ratio is

−
ε⊥t0
εt0

(63.3)

but, as we have seen, (63.3) equals −D⊥

D
[cf. (63.2)] only when D(t0) = 0 , thermal

expansion is negligible, rheology is not present (which is a good assumption for metals
but not for rocks or plastics), and, naturally, plastic changes must also be ruled out.

The 3D elastic energy density can be written in various forms:

ϱeel(D) =
1

2
tr (σelD)

(59.7)

=
1

2
tr
(
σdev

el Ddev)+ 1

2
tr
(
σsph

el Dsph
)

(61.6)
(61.7)
=

Edev

2
tr
(
DdevDdev)+ Esph

2
tr
(
DsphDsph) , (63.4)

[cf. (51.6)] with the property

ϱdeel = tr (σel dD) = Edev tr
(
Ddev dDdev)+ Esph tr

(
Dsph dDsph) . (63.5)

For uniaxial processes, (63.4) reduces to

ϱeel(D)|uniax =
1

2
tr (σelD)|uniax =

1

2
tr

(
σ D 0 0

0 0 0

0 0 0

)
=

1

2
σ D

(63.1)

=
E

2
D

2
, (63.6)

as anticipated in (51.6).

3.16 Thermoelasticity of solids – 3D thermodynamical as-
pects

The differences between the 3D and 1D treatments of thermoelasticity are mostly
technical; there are only a few principal aspects new with respect to what we have
seen in Sect. 3.12.

82Check these statements. You won’t regret it.
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The Hookean formulae (61.6)–(61.7) for σel remain unmodified in the presence of
thermal expansion. The 3D generalizations of (52.1)–(52.2) are

e(T,D) = cT +
αEsph

ϱ
T trD+ eel(D) (64.1)

(63.4)

= cT +
αEsph

ϱ
T trD+

Edev

2ϱ
tr
(
DdevDdev)+ Esph

2ϱ
tr
(
DsphDsph) ,

s(T,D) = c ln
T

Taux
+

αEsph

ϱ
trD , (64.2)

in accord with that, for isotropic materials, thermal expansion is isotropic.

(51.8) remains valid with (51.7) and

đw
dt

cf.
(51.5)

=
1

ϱ
tr (σelL)

(60.8)

=
1

ϱ
tr
(
σelL

S) (58.1)

=
1

ϱ
tr
[
σel

(
Ḋ+ αṪ1

)]
, (64.3)

which can be further rewritten with the help of (59.7) when needed.

For adiabatic processes, (53.6) gets generalized to

ṡ|s = 0 , c
Ṫ
∣∣∣
s

T
= −αEsph

ϱ
trḊ

∣∣∣
s
, Ṫ

∣∣∣
s
= −αEsph

ϱc
T trḊ

∣∣∣
s
. (64.4)

In the uniaxial case, this reduces to

Ṫ
∣∣∣
s

(60.10)

= −αEsph

ϱc
T ·3 · 1

3

(
Ḋ
∣∣∣
s
+ 2Ḋ⊥

∣∣∣
s

) (63.2)

= −αEsph

ϱc
T (1− 2ν)Ḋ

∣∣∣
s

(64.5)

(63.2)

= −αEsph

ϱc
T

(
2Esph + Edev

2Esph + Edev − 2
Esph − Edev

2Esph + Edev

)
Ḋ
∣∣∣
s

(63.1)

= −αE

ϱc
T Ḋ

∣∣∣
s
,

as seen in (53.6).
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4 Temporal thermodynamics

In 2 , we take thermodynamics seriously: processes – functions of time83 – are
determined as solutions of ordinary differential equations that describe how systems
act on each other.

In 2 , one can already have models that reflect thermodynamical irreversibility,
mechanical, electromagnetic and other phenomena (much better) incorporated, while
the description remains mathematically simple. Accordingly, 2 is a good framework
for models in/for ‘smart’ actuators, sensors, cube satellites, implants etc.that monitor
their own state and their environment by some simple means and run a small, fast,
and low-resource program to make decisions about their operation.

4.1 The dynamical equations

Let us take the example of one body and one environment interacting. Here, ‘en-
vironment’ is a body much larger than the other, so much larger that its intensive
quantities are not modified by the interaction. Its extensive quantities change in
time obeying the conservation laws (38.2)–(38.4):

E(t) + Ea(t) = Et = const. , =⇒ Ėa = −Ė , (65.1)

V (t) + Va(t) = Vt = const. , =⇒ V̇a = −V̇ , (65.2)

with masses considered constant for simplicity (‘a’ stands for ‘ambient’ and denotes
the quantities of the environment). Correspondingly, the mass variables will not be
displayed in the constitutive functions.

The body is described by the constitutive equations

p(E, V ), T (E, V ) or p(T, V ), E(T, V ) (65.3)

and the environment by

pa(Ea, Va), Ta(Ea, Va) or pa(Ta, Va), Ea(Ta, Va) . (65.4)

The balance equations for the extensive quantities as differential equations in time,
dictating the rate of change of each quantity, with the interaction functions

∗
Q =

∗
Q(T, Ta) [heating rate,

∗
Q = đQ/dt],

∗
W =

∗
W (p, pa) [working rate,

∗
W = đW/dt =

−p
∗
V = −p dV/dt], and

∗
V =

∗
V (p, pa) [the interaction function dictating the volume

83Time dependence is thence explicit. Space dependence is not considered in 2 – more closely,
continuous space dependence is not considered while discrete space dependence is allowed: we have
discretely many, themselves homogeneous, thermodynamical bodies.
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change rate] are chosen as

Ė =
∗
Q+

∗
W , i.e., dE/dt =

∗
Q
(
T (t), Ta

)
+

∗
W
(
p(t), pa

)
(66.1)

V̇ =
∗
V , i.e., dV /dt =

∗
V
(
p(t), pa

)
(66.2)

∗
W = −p

∗
V , i.e.,

∗
W
(
p(t), pa

)
= −p(t)

∗
V
(
p(t), pa

)
. (66.3)

One of the most frequently used examples for the heating rate interaction function
∗
Q(T, Ta) is

∗
Q (T, Ta) = −Γ (T − Ta) , (66.4)

the case of heat transfer via convection, where the positive coefficient Γ is the product
of the heat transfer coefficient and of the surface area through which heat transfer
occurs.84 Another engineeringly important example is

∗
Q (T, Ta) = −Γrad

(
T 4 − T 4

a
)
, (66.5)

describing radiative heat transfer (with another positive coefficient Γrad that depends
on surface area and other factors). At the general level, we impose the requirement
( satisfied by both of these examples)

∗
Q (T, Ta)


> 0 if T < Ta ,

= 0 if T = Ta ,

< 0 if T > Ta .

(66.6)

For
∗
V , an example appearing in engineering practice is

∗
V (p, pa) = Θ (p− pa) , (66.7)

relevant for hydraulic elements (with some positive coefficient Θ depending on geo-
metric and other characteristics, see more on this under the term ‘Hagen–Poiseuille
equation’85). At the general level, we require86

∗
V (p, pa)


> 0 if p > pa ,

= 0 if p = pa ,

< 0 if p < pa .

(66.8)

84The minus sign before the coefficient describes the natural expectation that the heating-type
energy increase rate of the body,

∗
Q, is positive if the environment is warmer than the body.

85‘Darcy’s law’, for capillary flows, is also of this form.
86Here, we expect expansion (dV/dt > 0) if the body has larger pressure than that of the

environment.
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Our system of ordinary differential equations, (66.1)–(66.3) supplemented by the
algebraic equations/relationships (65.3)–(65.4), with initial conditions on E and V
at some initial time t0, determines the process uniquely.

As interpretation, (66.1) is the first law of thermodynamics for our system, in other
words, the balance of energy. Later, we will see that (66.2) embodies the balance
of momentum in this system.87 Historically, thermodynamics has focused on energy
– probably that’s why the dynamical point of view is a later development: energy
balance in itself is not enough to have a closed set of dynamical equations so progress
was possible only having recognized what other dynamical aspects are available (and
necessary).

In (37.3), we have seen the Gibbs relation for a body. If the small changes in (37.3)
correspond to a small time interval dt along a process then dividing (37.3) by dt
yields

Ė = T Ṡ − pV̇ + µṁ . (67.1)

Bearing in mind that we have constant mass here, comparing (67.1) against (66.1)
with (66.3) and (66.2) shows that

T Ṡ =
∗
Q. (67.2)

This is the temporal thermodynamical formulation of the customary formula

T dS = đQ, (67.3)

which is rewritten now as

T
dS

dt
=

đQ
dt

, T Ṡ =
∗
Q. (67.4)

4.2 The second law of thermodynamics in temporal thermo-
dynamics

Let us identify the stationary process(es) of this system. Both because of usual
mathematical terminology (see Sect. 4.3) and because of usual thermodynamical
terminology, such a solution will be called equilibrium here. Now, time independence
of V tells us

∗
V = 0 via (66.2), which, by (66.8), imposes p = pa . Next,

∗
V = 0 also

induces
∗
W = 0 [see (66.3)]. As time independence of E says Ė = 0 , by (66.1) we

find
∗
Q = 0 , and arrive at T = Ta due to (66.6). Altogether, we have found that

the equilibrium solution must satisfy the equality of the intensive quantities,

T = Ta , p = pa . (67.5)
87And, naturally, when mass is also allowed to change then the balance of mass is also needed.
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As the next point to investigate, let us check how total entropy, understood naturally
in the sense (38.9), changes along a process allowed for our system. If the small
changes in (38.1) correspond to a small time interval dt along a process then dividing
(38.1) by dt yields

Ṡ =
1

T
Ė +

p

T
V̇ − µ

T
ṁ , (68.1)

the last term being zero for us now. Analogously,

Ṡa =
1

Ta
Ėa +

pa

Ta
V̇a −

µa

Ta
ṁa

(65.1)–(65.2)
= − 1

Ta
Ė − pa

Ta
V̇ +

µa

Ta
ṁ (68.2)

(the last term being zero again). Consequently,

Ṡt

∣∣∣
pr

=

(
1

T
− 1

Ta

)
Ė +

(
p

T
− pa

Ta

)
V̇

(66.1)–(66.2)
=

(
1

T
− 1

Ta

)( ∗
Q+

∗
W
)
+

(
p

T
− pa

Ta

)
∗
V

(66.3)

=

(
1

T
− 1

Ta

)
∗
Q− p

(
1

T
− 1

Ta

)
∗
V +

(
p

T
− pa

Ta

)
∗
V

=

(
1

T
− 1

Ta

)
∗
Q+

(
p

Ta
− pa

Ta

)
∗
V =

Ta − T

TaT

∗
Q+

p− pa

Ta

∗
V (68.3)

which, by virtue of (66.6) and (66.8) (and because of T, Ta > 0 ) contains two non-
negative terms, the first being zero only for T = Ta and the second only for p = pa
so, altogether, we have found that

Ṡt

∣∣∣
pr

{
= 0 if T = Ta and p = pa ,

> 0 otherwise .
(68.4)

In words, total entropy increases along processes, except for in equilibrium.

Next, let us see other important properties of total entropy (considered still as a
function of E and V ): that it’s concave from above, and that it has a strict maximum
at equilibrium.

By virtue of (37.5), applied on Sa, and (65.1)–(65.2),

St(E, V ) = S +
1

Ta
Ea +

pa

Ta
Va −

µa

Ta
ma = S +

1

Ta
(Et − E) +

pa

Ta
(Vt − V )− µa

Ta
ma

= S(E, V )− 1

Ta
E − pa

Ta
V + const. = ms

(
E

m
,
V

m

)
− 1

Ta
E − pa

Ta
V + const. ,

(68.5)
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the derivative of which is

DSt(E, V ) =

 ∂St
∂E

∣∣
V

∂St
∂V

∣∣
E

 =

m ∂s
∂e

∣∣
v
· 1
m − 1

Ta

m ∂s
∂v

∣∣
e
· 1
m − pa

Ta

 (28.1)

=

 ∂s
∂e

∣∣
v
− 1

Ta

∂s
∂v

∣∣
e
− pa

Ta

 =

 1
T − 1

Ta

p
T − pa

Ta

 ,

(69.1)

in analogy to (38.6), actually. Then, on one side, we see that the first derivative is
zero if (and only if) in analogy to (38.7),

T = Ta , p = pa . (69.2)

which is the condition for equilibrium [see (67.5)]. In parallel, the second derivative
is the derivative of  ∂s

∂e

∣∣
v
− 1

Ta

∂s
∂v

∣∣
e
− pa

Ta

 (69.3)

[as seen in (69.1)], in which the constants 1
Ta

and pa
Ta

drop out from a subsequent
differentiation, while ( ∂

∂E

∂
∂V

)
=

( 1
m

∂
∂e

1
m

∂
∂v

)
, (69.4)

hence

D2St(E, V ) = 1
m D2s (e, v) , (69.5)

which has been found to be concave from above (cf. Sect. 3.7 on page 35).

As one consequence, equilibrium is a strict maximum (first derivative is zero, second
derivative is strictly negative definite). Moreover, the summary of this section is that,
along processes, total entropy increases towards its strict maximum, equilibrium
(except for equilibrium itself, which is a stationary process with time independent
total entropy). This previous sentence is actually our formulation of the second
law of thermodynamics (for the example system ‘body plus environment’ considered
here).

Total entropy of a body and an environment is sometimes called extropy. A more
frequently appearing related notion is exergy, which is extropy multiplied by the
temperature of the environment. Up to a constant multiplier, extropy and exergy
are the same. Why the latter notion is more popular is that it is of energy dimension88

so it brings entropy to common ground with the various well-known energy types.

88M L2

T2 , naturally.



4.3 Asymptotic stability and the Lyapunov function 70

Traditionally, power plants have been optimized with respect to thermal efficiency, in
other words, with respect to energy efficiency. Recently, optimization with respect
to exergy is spreading. This latter approach wants to reduce the amount of irre-
versibility created during the processes. A generalization of exergy analysis is when
various costs are also incorporated in the notion of exergy, making it a powerful tool
for business decisions regarding power plants.

4.3 Asymptotic stability and the Lyapunov function

In the previous section, the state of the system was described by two state quantities,

E and V , a state ζ was characterized as ζ =

(
E
V

)
, the state space Z (recall

Sect. 3.1) was thus a two-dimensional vector space, a process was parametrized by

time, ζ(t) =
(
E(t)
V (t)

)
, and was determined by a set of differential equations,

d

dt

(
E

V

)
=

( ∗
Q+

∗
W

∗
V

)
(70.1)

[cf. (66.1)–(66.2)], or, abbreviating the rhs (see Footnote 40 in page 34) of (70.1) by
f, 89

dζ

dt
= f

(
ζ(t)

)
(70.2)

in short.

An ordinary differential equation90 like (70.2) where the rhs does not depend on t
explicitly (but only via the t dependence of ζ, as a composite function) is called
autonomous. If f(ζe) = 0 at an ζe then ζe as a stationary process (dζe/dt =
0 , ζe = const.) is actually a solution of (70.2) [a rather special solution indeed].
Such a solution is called an equilibrium of the autonomous differential equation, as
mentioned in the previous section.

An equilibrium ζe is named stable if processes starting from a neighbourhood B 1

of ζe in Z (as initial conditions at some t0) will subsequently stay within some
neighbourhood B 2 of ζe (B 2 is usually larger than B 1). In parallel, an equilibrium
ζe is attractive if processes starting from a neighbourhood B of ζe in Z will tend
to ζe [ζ(t) → ζe] as t → ∞ . As a combination, an equilibrium ζe is asymptotically
stable if it is stable and attractive.

89For gourmets: f maps from Z to Z/T, as can be seen dimensionally from (70.2).
90A system of differential equations for scalar unknowns can also be considered as a single differ-

ential equation for a vector unknown, a vector formed by those scalars.
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Note how important stability and asymptotic stability are for engineering. Stability
provides robustness under perturbations/disturbances. Moreover, asymptotic sta-
bility ensures that the effect of perturbations/disturbances is not only bounded but
will diminish as time passes.

Correspondingly, it is important to determine whether an equilibrium of an au-
tonomous ordinary differential equation is asymptotically stable91. For linear dif-
ferential equations, i.e., when f is a linear map on Z , investigating (asymptotic)
stability is usually not very hard – the eigenvalues of the linear map are to be ana-
lyzed. On the contrary, for nonlinear cases the task is more difficult. One possibility
is linearization of f around ζe and provides results in a neighbourhood of ζe, which is
only partial success. Observe that, in thermodynamics, most situations are expected
to be nonlinear – see the example of (66.3): in

∗
W ,

∗
V is some function of p 92 and is

multiplied by p.

This is the point where the Lyapunov function technique comes helpful. If a scalar
function L defined on Z satisfies both of the following two conditions:

• it has a strict maximum at ζe,

• its directional derivative in the direction of f, i.e., DfL ≡ DL · f , is positive
except for at ζe [where it is necessarily zero, thanks to f(ζe) = 0 , ]

then, according to Lyapunov’s theorem93, ζe is asymptotically stable.94

Let us observe that the second of these conditions is equivalent to that, along pro-
cesses satisfying (70.2), L

(
ζ(t)

)
increases except for at equilibrium: composite func-

tion differentiation gives that

dL
(
ζ(t)

)
dt

= DL · dζ
dt

(70.2)

= DL · f
(
ζ(t)

)
= DfL

(
ζ(t)

)
. (71.1)

Accordingly, we can realize that total entropy in Sect. 4.2 is actually a Lyapunov
function! In fact, in 2 in general, thermodynamical consistency criteria guaran-
tee that total entropy is a Lyapunov function ensuring asymptotic stability of the
equilibrium.

As a final technical remark concerning the Lyapunov technique, the above two con-
ditions can be practically satisfied by showing that

91Stability is more central for mechanics while asymptotic stability is more relevant for thermo-
dynamics, as we will see soon.

92Some nontrivial function of p, as it has to satisfy (66.8).
93Some mathematical subtleties are not mentioned here.
94An analogous theorem exists for stability. Also, in mechanical applications, where L is usu-

ally some energy, minimum and negative directional derivative are required, while here we have a
formulation (maximum and positive directional derivative) that is the thermodynamically natural
one, as we will see soon. The two conventions can be mapped to one another by a trivial multiplier
−1.
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• at ζe, L has zero first derivative and negative definite second derivative,

• at ζe, DL · f has zero first derivative and positive definite second derivative.

4.4 Volume change rate as an additional state variable

As seen in (66.4)–(66.5), typical heating rate interaction functions satisfy

∗
Q(T, Ta) = −

∗
Qa(Ta, T ) (72.1)

or, between bodies 1 and 2,

∗
Q12(T1, T2) = −

∗
Q21(T2, T1) . (72.2)

This is quite natural, actually: heat moves from one body to the other; heat is one
type of energy exchange.

It is similarly natural to assume that (66.3) is also symmetric:

∗
W = −p

∗
V ,

∗
Wa = −pa

∗
V a

(
or

∗
W 1 = −p1

∗
V1,

∗
W2 = −p2

∗
V 2

)
. (72.3)

Then we find the ‘inconvenient truth’ that total internal energy is not conserved:

Ė + Ėa

along a
process
=

∗
Q+

∗
W +

∗
Qa +

∗
W a =

∗
Q+

∗
Qa +

∗
W +

∗
W a (72.4)

= 0− p
∗
V − pa

∗
V a

along a
process
= −pV̇ − paV̇a

(65.2)

= −pV̇ + paV̇ = (pa − p)V̇ ̸≡ 0 .

One way to restore total internal energy conservation is if we set

∗
W = −p+ pa

2

∗
V ,

∗
Wa = −p+ pa

2

∗
V a , (72.5)

as it is simple to check, analogously to (72.4). Real-life explanation of such working
rates can be if pressure is not so space independent within one body as we have
thought: near to the – e.g., membrane-like – boundary (in a ‘boundary layer’) it
starts to interpolate between the distant, body-average, pressure p and the other
distant, body-average, pressure pa. Something similar happens to temperature when
two solid bodies with different temperatures are touched to one another: there will
emerge a contact temperature at the boundary, an intermediate value interpolating
between the two distant, body-average, temperatures. Let us not forget that mod-
elling always means introducing a simplifying approximate picture: the prescriptions
(72.5) are one valid solution, which, in some cases, can be acceptably realistic.
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A second and undoubtedly more frequently close-to-reality solution is when we take
the kinetic energy of the piston that separates the two bodies also into account. If the
volume of a simple material is V = Ax where x indicates the position of the piston,
A the cross-section area of the piston, and mP its mass, then its kinetic energy is

K =
mP

2
ẋ2 =

mP

2

(
V̇

A

)2

=
mP

2A2
V̇ 2 =

χP
2
V̇ 2 with χP =

mP

A2
. (73.1)

In parallel, we take into consideration Newton’s mechanical equation of motion for
the piston:

mPẍ = pA− paA = (p− pa)A, mPV̈ = mPAẍ = (p− pa)A
2 , χPV̈ = p− pa .

(73.2)

Then we can find that total energy, understood including K as well, is conserved:

Ė + Ėa + K̇
along a
process
=

∗
Q+

∗
W +

∗
Qa +

∗
W a + χPV̇ V̈

=
∗
Q+

∗
Qa − p

∗
V − pa

∗
V a + χPV̈ V̇

along a
process
= 0− p

∗
V − pa

∗
V a +

(73.2)

(p− pa)V̇
along a
process
= −pV̇ − paV̇a + (p− pa)V̇

(65.2)

= −pV̇ + paV̇ + (p− pa)V̇ ≡ 0 . (73.3)

We can recognize that V̇ has actually emerged to the level of a state variable: some
energy contribution (K) depends on it, and how processes are determined has also
been modified via it [through (73.2)]. To explicitly display the state variable role
of V̇ , we introduce a standalone notation, B, for it.95 Accordingly, a state of our
system ‘body + environment’ is described by (E, V,B) (mass transfer still omitted
for simplicity), time evolution is described by

Ė =
∗
Q+

∗
W =

∗
Q− p

∗
V =

∗
Q− pB , (73.4)

V̇ =
∗
V = B , (73.5)

Ḃ =
∗
B =

1

χP
(p− pa) . (73.6)

What happened here is that
95Analogously to how, in mechanics, velocity – originally the time derivative of some other quan-

tity (position) – has historically emerged to the level of an independent state characterizing quantity.
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• the interaction functions became B dependent as well,
• the relationship between B and V̇ is analogous to how, in mechanics, velocity

is related to position, and
• Newton’s equation determines the time evolution of B.

Concerning constitutive equations, the only change is that there is an additional
energy term,

K(B) =
χP
2
B2 . (74.1)

Now, actually, mechanics has been taken much more seriously and more explicitly:

• in addition to the balance of energy, (73.4), the balance of momentum has also
been incorporated – see (73.6) –, though not in full vectorial form but at least
to the extent our state variables allow, and

• mechanical energy has also been included.96

For determining the equilibrium solution of (73.4)–(73.6), we can start with (73.6),
which requires equality of the pressures for constant B. Next, for constant V , (73.5)
necessitates B = 0 . Finally, constant E demands, via (73.4),

∗
Q = 0 , which, by

(66.6), imposes equality of the temperatures. The equilibrium is thus characterized
by the same conditions as for (66.1)–(66.3), supplemented now by B = 0 . In this
sense, B is a nonequilibrium variable: it is zero in equilibrium.

Let us now repeat calculation (68.3) for the time evolution equations (73.4)–(73.6)
96You can see here az example how modelling proceeds: we have some knowledge about the

relevant laws – here, momentum and energy balance, both its mechanical and heat transfer side,
and the constitutive description of the bodies –, we make some simple assumptions – here, we try to
survive with only a few scalar state variables that have no space dependence assumed – and realize
our general knowledge in the chosen restricted framework.



4.4 Volume change rate as an additional state variable 75

and with total energy conservation (73.3):

Ṡt

∣∣∣
pr

= Ṡ + Ṡa

(68.1)
=

1

T
Ė +

p

T
V̇ − µ

T
ṁ+

1

Ta
Ėa +

pa

Ta
V̇a −

µa

Ta
ṁa

(73.3), (65.2)
=

(
1

T
− 1

Ta

)
Ė − 1

Ta
K̇ +

(
p

T
− pa

Ta

)
V̇

(73.4)–(73.5)
=

(
1

T
− 1

Ta

)
∗
Q−

(
1

T
− 1

Ta

)
pB − 1

Ta

(74.1)

χPBḂ +

(
p

T
− pa

Ta

)
B

=
Ta − T

TaT

∗
Q+

(
p

Ta
− p

T

)
B −

(73.6)

p− pa

Ta
B +

(
p

T
− pa

Ta

)
B

=
Ta − T

TaT

∗
Q+

(
p

Ta
− p

T
− p

Ta
+

pa

Ta
+

p

T
− pa

Ta

)
B =

Ta − T

TaT

∗
Q. (75.1)

Remarkably, now the mechanical side does not contribute to entropy production rate
density. Mechanical interaction can be reversible – here we can see it in thermody-
namical language, too.

Total entropy is a Lyapunov function here, too, ensuring asymptotic stability of the
equilibrium – to see concavity from above and that its strict maximum at equilibrium,
we investigate the first and second derivative of

St(E, V,B) = S(E, V )− 1

Ta
E − 1

Ta
K − pa

Ta
V + const.

= ms

(
E

m
,
V

m

)
− 1

Ta
E − χP

2Ta
B2 − pa

Ta
V + const. (75.2)

[the appropriate generalization of (68.5)]. We find, analogously to (69.1),

DSt(E, V,B) =


1
T − 1

Ta

p
T − pa

Ta

−χP
Ta

B

 , (75.3)

yielding that equilibrium is characterized by

T = Ta , p = pa , B = 0 (75.4)

[(69.2) supplemented with a third condition]. Further, the second derivative is also
an extension of (69.5):

D2St(E, V,B) =

(
1
m D2s (e, v) 0

0 −χP
Ta

)
(75.5)
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in (2 + 1)× (2 + 1) block matrix notation, which tells that D2St(E, V,B) is strictly
negative definite – there is one more Sylvester criterion (recall Page 35) fulfilled:

χP
Ta

det

(
− 1

m
D2s (e, v)

)
> 0 . (76.1)

As a remark, if the expansion is not unidirectional but isotropic, like a helium balloon
rising in the air, then χP turns out to be V dependent. That induces a few additional
terms but causes no principal difficulty so here we do not consider that more general
scenario.

Briefly mentioning a third possible solution for the paradox raised at the beginning of
this Section, the mass of the simple material itself also serves as a source for kinetic
energy, with come coefficient χmaterial. Moreover, the two origins of kinetic energy
can be combined so, in general, a coefficient χ may comprise the two contributions.

4.5 Volume change rate as a state variable: an application

As one application of the model described in the previous
Section, let us consider an amount of ideal gas in a bottle that
lies on a table, separated from the environment by a drop of
mercury that is in the bottleneck. This ‘plug’ is assumed to
be able to move frictionlessly in the bottleneck of cross-section area A. χP is related
to the mass of the drop according to (73.1). When the gas reaches equilibrium
with the environment, we insulate the bottle well enough so we can suppose

∗
Q = 0

thereafter. Then we knuckle the drop a bit so it starts to make small-amplitude
oscillations. Let us calculate the angular frequency of this small oscillation.

Let Veq denote the volume of the gas when it has the same temperature and pressure
as that of the environment (Ta and pa, respectively). By ‘small’ oscillations we
mean97 that

∆V = V − Veq , (76.2)

for which we have

∆̇V = V̇ , ∆̈V = V̈ , (76.3)

satisfies

|∆V |
Veq

≪ 1 . (76.4)

97Among others – for example, we also hope that the drop does not leave the bottleneck.
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The adiabatic condition
∗
Q = 0 , via (67.2), (25.5), (16.2), and (34.5), implies the

well-known fact that, along adiabatic processes of an ideal gas,

pV γ = const. , (77.1)

which we utilize here in the form

pV γ = paV
γ
eq . (77.2)

Employing the good-to-remember approximation98

(1 + δ)a ≈ 1 + aδ (|δ| ≪ 1) (77.3)

for δ = ∆V
Veq

, a = −γ ,

p
(77.2)

=
paV

γ
eq

V γ
=

paV
γ
eq

V γ
eq

(
1 + ∆V

Veq

)γ ≈
paV

γ
eq

V γ
eq

(
1− γ

∆V

Veq

)
= pa −

paγ

Veq
∆V . (77.4)

Along a process, (73.6) with (73.5) tells us

V̈ =
1

χP
(p− pa) , (77.5)

∆̈V ≈ 1

χP

(
pa −

paγ

Veq
∆V − pa

)
= − paA

2γ

mPVeq
∆V = −ω2∆V with ω =

√
paA2γ

mPVeq
.

(77.6)

Now let us recall Page 7: (77.6) has the power to motivate action: by measuring ω
and the constants pa, A, mP, Veq, we can determine γ, from

γ = ω2mPVeq

paA2
. (77.7)

Indeed, this is a historically known method to measure γ.

4.6 Viscosity-type damping in temporal thermodynamics

If we have a new state variable, B, or, its specific version, b = B/m , then it can
appear in constitutive functions. Let us see what happens if pressure becomes de-
pendent on it. Since b is a nonequilibrium variable (zero for static cases), and has

98It’s simply the first-order Taylor expansion.
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change-rate meaning ( b = v̇ along processes allowed by the time evolution equa-
tions), let us consider the simplest case when b dependence is a linear contribution
to the static situation:99

p(e, v, b) = p(e, v, 0)− βb ≡ p0(e, v)− βb (78.1)

[β is not necessarily constant here but can have dependence on e, v, or even b
(quasilinear case)]. Everything else is kept unchanged with respect to (73.4)–(74.1)
(they just now contain this extended p), and neither T (e, v) nor s(e, v) are not
generalized to having b dependence. Then, for repeating calculation (75.1), we have
to recognize that (68.1) is still valid for the b = 0 situation:100

Ṡ =
1

T
Ė +

p0
T
V̇ − µ

T
ṁ , (78.2)

Consequently, the first line of (75.1) is to be written with p0, or, when written with
p substituting p0 = p+βb, an additional term βb

T V̇ is present. That term, rewritable
as

βb

T
B =

βm

T
b2 (78.3)

travels through the calculation so, in the result, it remains as an additional term.
Hence, we can see that the β related contribution to the system, manifesting itself
in the ‘mechanical’ equation (73.6) that is rewritable as

χPV̈
along a
process
= p− pa = −βb+ (p0 − pa) = − β

m
V̇ + (p0 − pa) , (78.4)

contributes to entropy production rate density and creates irreversibility if β > 0 .

Concerning the physical interpretation of the β related pressure contribution (force
contribution), its mechanical role is clear from (78.4): it embodies a damping force
proportional to velocity. In other words, this a viscosity-type contribution. Indeed, in
4 , we will see how β can be expressed in terms of the viscosity coefficient. However,
β is not necessarily of internal friction origin but a damped motion of a piston can
also be modelled via it. Or, as with the case of χ, β may comprise both types of
contribution.

Now let us consider ‘slow enough’ processes, namely, such time dependences when
χPV̈ is negligible w.r.t. − β

m V̇ . [As a rule of thumb, a ‘slow’ limit means that we
neglect the highest time derivative (we keep only the lowest time derivative).] Then
(78.4) can be rearranged as

V̇ ≈ m

β
(p0 − pa) , (78.5)

99It will turn out soon why a − sign before β is natural to introduce in the convention for β.
100(68.2) remains untouched.
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Comparing this with (66.7) enlights the applicability of the (66.2)-type equation:
that describes such ‘slow/overdamped’ situations.

Next, let us take ‘even slower / over-overdamped’ circumstances. Then we neglect
the remaining time derivative as well, arriving at

p0 ∼∼∼ pa . (79.1)

This is also an enlighting formula: this is the historical ‘quasistatic’, ‘equilibrium’,
1 picture about processes: the environment enforces its pressure on the body. p0

can change only if pa changes.

Finally, it is not hard to see that the extra pressure term

pirr = −βb (79.2)

can be generalized to any

pirr (e, v, b)


> 0 if b < 0 ,

= 0 if b = 0 ,

< 0 if b > 0

(79.3)

with the same conclusion: the corresponding entropy production term

−pirr

T
mb (79.4)

is positive except for the equilibrial value b = 0 . 101

4.7 Numerical illustrations for processes in temporal thermo-
dynamics

Both time evolution equations (70.1) and (73.4)–(73.6) are of the form (70.2), and,
as mentioned in Page 71, are nonlinear. Therefore, in most cases, we apply some
numerical approximate solution.102

At the general level, an equation dζ
dt = f

(
ζ(t)

)
[introduced in (70.2)] can most

simply be solved in the explicit Euler scheme. In this approach, we consider a finite
discrete sequence of time values,

tj = j ·∆t , j = 0, 1, . . . , J , (79.5)

101In parallel, the total entropy function (75.2) itself is not modified — only its time dependence
along a process – so it remains a Lyapunov function as before.
102A few nonlinear problems can be solved exactly analytically, and analytical approximate so-

lutions are also a possible way. Here, we present a simple and generally applicable approach: an
explicit finite-difference numerical solution.
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by choosing a finite, ‘small enough’ time step ∆t, and wish to know (at least approx-
imate) values of ζ at these instants tj , ζj ≈ ζ

(
tj
)
. Approximating the derivative

(ratio of differentials) by a ratio of differences,

dζ

dt

(
tj
)
≈

ζ
(
tj+1

)
− ζ
(
tj
)

tj+1 − tj
≈ ζj+1 − ζj

∆t
, (80.1)

the differential equation is approximated as

ζj+1 − ζj

∆t
≈ dζ

dt

(
tj
)
= f
(
ζ
(
tj
))

≈ f
(
ζj
)
≡ fj , (80.2)

ζj+1 ≈ ζj +∆t · fj . (80.3)

To start the procedure, the initial condition ζ0 is needed. For simple examples, see
Sects. 6.4–6.5.

In temporal thermodynamics, the interaction functions are usually given in terms
of intensive quantities while the time evolution equations tell the time evolution
of extensive quantities so constitutive functions must also be evaluated in order to
obtain the intensives from the extensives.

In the case of the following (66.1)–(66.3) type problem with (66.4) and (66.7),

Ė =
∗
Q+

∗
W = −Γ (T − Ta)− p

∗
V , (80.4)

V̇ =
∗
V = Θ(p− pa) , (80.5)

+ given p(E, V ), T (E, V ) [and the consequence E(T, V )] (80.6)

+ initial conditions T (0), V (0) (80.7)

(mass being constant and therefore having been omitted from the notations), we can
proceed as follows. We calculate the initial values of p and E from (80.6). Then we
calculate new V from the discretized version of (80.5) and the old value of p. Then
we calculate new E from the discretized version of (80.4) and the old values of T
and p. Finally, we calculate new p and T from the new E and V and (80.6). And so
on, and so on.

4.8 Non-Newtonian fluids modelled in temporal thermody-
namics

Even the general form (79.3) has only a restricted modelling capability. Generaliza-
tions of the viscosity-type (also called Newtonian) fluid models to ones where the
behaviour depends on change rates or on temporal past in some more complex way
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(so-called non-Newtonian fluid models) have also proved needed, to describe tooth-
paste, shampoo, yoghurt, ketchup, honey, blood103 etc. Some of non-Newtonian ma-
terials behave like a solid for fast changes (abrupt disturbances etc.) and like a fluid
for slow ones. Others behave oppositely. There may also be multiple time scales at
which the material responds differently and, at least seemingly, the behaviour may
also appear to depend on the past history of the material.

Models to describe such materials should also respect the second law of thermo-
dynamics, and one way to obtain such models uses the internal variable approach.
Here, we consider a simple example of it.

Similarly to that B was found a nonequilibrium state variable (i.e., a one that is zero
in equilibrium, hence, a value B ̸= 0 characterizes how far a state is far from equi-
librium), we assume the existence of another nonequilibrium state variable, denoted
by ξ.104

Now we suppose some irreversibility-related extra term not only in pressure (pirr)
but also in specific entropy:

s(e, v, ξ) = s(e, v, 0) + sirr(ξ) ≡ s0(e, v)−
1

2
ξ2 . (81.1)

The special form − 1
2ξ

2 is chosen based on simplicity – it looks like a Taylor expansion
to second order –, it vanishes in equilibrium (where we want ξ = 0), and it preserves
103As one example, see D. Liepsch, S. Sindeev, and S. Frolov: An impact of non-Newtonian blood

viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, IOP Conf. Series:
Journal of Physics: Conf. Series 1084 (2018) 012001; DOI:10.1088/1742-6596/1084/1/012001.
104B itself could also be used for the purposes below but let us explore this more general possibility.

https://doi.org/10.1088/1742-6596/1084/1/012001
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concavity of total entropy: analogously to (75.2)–(76.1),

St(E, V,B, ξ) = S0(E, V )− m

2
ξ2 − 1

Ta
E − 1

Ta
K − pa

Ta
V + const.

= ms0

(
E

m
,
V

m

)
− m

2
ξ2 − 1

Ta
E − χP

2Ta
B2 − pa

Ta
V + const. ; (82.1)

DSt(E, V,B, ξ) =


1
T − 1

Ta

p
T − pa

Ta

−χP
Ta

B

−mξ

 , equilibrium:


T = Ta ,

p = pa ,

B = 0 ,

ξ = 0;

(82.2)

D2St(E, V,B, ξ) =


1
m D2s (e, v) 0 0

0 −χP
Ta

0

0 0 −m

 ; (82.3)

the second derivative written in (2 + 1 + 1)× (2 + 1 + 1) block matrix notation.

In parallel, w.r.t. (75.1), there are now two additional terms [(in the viscosity-type
model – see Sect. 4.6 – there was only one additional term)]:

Ṡt

∣∣∣
pr

=
Ta − T

TaT

∗
Q+

m

T

[
−pirrb− Tξξ̇

]
. (82.4)

Positive definiteness of the [. . .] part can, for example, be ensured if

pirr = −βb , ξ̇ = −βξ ξ (β, βξ ≥ 0) (82.5)

but, applying Onsager’s idea105, coupling between the two terms is also possible:

pirr = λ11 (−b) + λ12

(
−T ξ̇

)
, (82.6)

ξ = λ21 (−b) + λ22

(
−T ξ̇

)
, (82.7)

where the coefficients are not necessarily constants but can be state dependent, most
prominently, T dependent. Substituting (82.6)–(82.7) into the [. . .] part of (82.4)
105His Nobel Prize winning idea, which provided theoretical framework for the so-called cross-

effects including the Seebeck, Peltier, Dufour, Soret, and Darcy effects.
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gives

−pirrb− Tξξ̇ =
(
−b −T ξ̇

)(λ11 λ12

λ21 λ22

)(
−b

−T ξ̇

)
(83.1)

=
(
−b −T ξ̇

)( λ11
λ12+λ21

2
λ12+λ21

2 λ22

)(
−b

−T ξ̇

)
(83.2)

so positive definiteness of this expression (of this entropy production contribution)
implies

λ11 ≥ 0 , λ22 ≥ 0 , det

(
λ11

λ12+λ21

2
λ12+λ21

2 λ22

)
= λ11λ22 −

(
λ12+λ21

2

)2 ≥ 0 . (83.3)

If one has knowledge about the physical meaning of the internal variable ξ then the
coefficients λij can be measured (fitted on measurement data) assuming the validity
of (82.6)–(82.7). If not then what we can do is that we eliminate ξ from (82.6)–(82.7),
finding one equation for measurable quantities. The result is simple if we assume
that T as well as the coefficients λij do not change considerably during a process:
then we obtain the equation106

pirr + τnN ṗirr = −ÊnNb− ˆ̂
EnN ḃ (83.4)

with

τnN = Tλ22 ≥ 0 , (83.5)

ÊnN = λ11 ≥ 0 , (83.6)

ˆ̂
EnN = T (λ11λ22 − λ12λ21) = λ11λ22 −

(
λ12+λ21

2

)2
+
(
λ12−λ21

2

)2 ≥ 0 , (83.7)

the inequalities following from (83.3). In rheology – the area dealing with rate or
past dependent behaviour of materials – (83.4) is called the Jeffreys model.

Apparently, viscosity is included as the special case when both τnN and ˆ̂
EnN are zero.

In parallel, the general situation is sensitive to higher time derivatives so the pressure
induced mechanical behaviour has more complicated change rate dependence than for
viscosity. For example, τnN = 0 , ˆ̂

EnN > 0 means acceleration dependent pressure,
and τnN > 0 makes the picture even trickier. For example, in the ‘fast limit’ (when
changes happen on a time scale that is much smaller than the time scales embodied by
the coefficients, τnN and ˆ̂

EnN/ÊnN, see more on the fast and slow limits in Sect. 4.9),
106In Sect. 4.9, in the analogous situation for solids, the details of the elimination are given. The

notation nN stands for non-Newtonian.
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the highest time derivatives dominate, leading to a seeming/effective viscosity-related
coefficient ˆ̂

EnN/τnN, while in the ‘slow limit’ the lowest time derivatives dominate and
ÊnN appears as the viscosity-related coefficient (and for intermediate-speed processes
we see some more-or-less interpolated but more delicate behaviour).

If we generalize the above treatment by allowing nonlinearities here or there then
the picture becomes even further trickier.107

4.9 Rheology of solids – 1D treatment

Similarly to how an internal variable extension of a simple material model leads to
a model (a family of models, in fact) of non-Newtonian behaviour, an elastic solid
body model can also be extended to obtain a model family, the Kluitenberg-Verhás
family for a rheological model of solids.

For simplicity, let us take the description of solids seen in Sects. 3.11–3.12 with
thermal expansion neglected, α = 0 . On the other side, let us now shift energy
rather than entropy. Namely, we assume a ‘nonequilibrium’ variable η and take

e(T,D, η) = cT +
E

2ϱ
D2 +

1

2
η2 , (84.1)

s(T,D, η) = c ln
T

Taux
. (84.2)

In addition, according to that rheology is most manifest in the mechanics aspect, we
suppose stress gets an irreversible contribution,

σ = σel + σirr

(47.5)

= ED + σirr . (84.3)

Rheology is expected to be an irreversible property of the material, not of a body–
environment interaction. Then it is enough to see entropy production within the solid
body. Moreover, rheology is expected to produce irreversibility during adiabatic108

processes, too – it is a form of irreversibility bound to mechanical work rather than
107Even the linear range allows more than one internal variable, which leads to higher time deriva-

tives after elimination. Moreover, in the so-called memory functional approach, distant past depen-
dence can also be incorporated. However, more time derivative coefficients or a whole memory kernel
function to fit on experimental data is more error prone so predictive power decreases. Increase
complexity only if circumstances enforce you to do it.
108Be careful: here, T ds ̸= đq any more: irreversible processes inside the material produce

additional forms of entropy change.
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to heat. Then, along any such process,

ṡ|process = c
Ṫ

T

(84.1)

=
1

T

(
e− E

2ϱ
D2 − 1

2
η2
)·

=
1

T

(
ė− E

ϱ
DḊ − ηη̇

)
=

1

T

(
1

ϱ
σL− E

ϱ
DḊ − ηη̇

)
(84.3)

=
1

T

(
1

ϱ
EDL+

1

ϱ
σirrL− E

ϱ
DḊ − ηη̇

)
L=Ḋ

=
1

T

(
1

ϱ
σirrḊ − ηη̇

)
. (85.1)

We impose that this should be non-negative, and zero only in equilibrium, and ensure

σirrḊ − ϱηη̇ ≥ 0 (85.2)

via Onsagerian equations, analogously to (82.6)–(82.7):

σirr = λ11Ḋ + λ12 (−ϱη̇) , (85.3)

η = λ21Ḋ + λ22 (−ϱη̇) , (85.4)

with actually the same inequality-type restrictions on λij as (83.3).

Also similarly to Sect. 4.8, we may have no knowledge about the physical meaning
and measurement of η, in which case we eliminate it. If we assume that the material
describing coefficients λij are constants – at least to a good approximation along
a process, e.g., their temperature dependence is not considerable –, then we can
proceed as follows. First, we rearrange (85.4) as

η + λ22ϱη̇ = λ21Ḋ ,

(
1 + λ22ϱ

d

dt

)
η = λ21Ḋ ,

(
1 + λ22ϱ

d

dt

)
η̇

d
dt

= λ21D̈ . (85.5)

Next, we apply the found differential operator 1 + λ22ϱ
d
dt on (85.3) and obtain(

1 + λ22ϱ
d

dt

)
σirr =

(
1 + λ22ϱ

d

dt

)
λ11Ḋ − λ12ϱ

(
1 + λ22ϱ

d

dt

)
η̇ , (85.6)

σirr + λ22ϱ︸︷︷︸
=:τ

σ̇irr = λ11︸︷︷︸
=:Î

Ḋ + λ22ϱλ11D̈ − λ12ϱ ·
(85.5c)

λ21D̈

= ÎḊ + ϱ (λ11λ22 − λ12λ21)︸ ︷︷ ︸
=:

ˆ̂
I

D̈ (85.7)

σirr + τ σ̇irr = ÎḊ +
ˆ̂
ID̈ , (85.8)

σ + τ σ̇
(84.3)

= ED + ÊḊ +
ˆ̂
ED̈ (85.9)
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with coefficients that inherit the following relationships and inequality properties:

Î = Ê − τE ≥ 0 =⇒ Ê ≥ τE , (86.1)
ˆ̂
I =

ˆ̂
E − τ Î ⇐=

ˆ̂
E =

ˆ̂
I + τ Î ≥ 0 . (86.2)

To make a comparison to various well-known rheological models, let us rewrite (85.9),
taking the customary supposition D(t0) = 0 , using (50.1) with our present assump-
tion of negligible α, and writing simply ε in the place of εt0 :

σ + τ σ̇ = Eε+ Êε̇+
ˆ̂
Eε̈ . (86.3)

When some of the coefficients are zero, we recover the following simpler models, each
finding numerous practical applications:

σ = Eε Hooke (solid) (86.4)

σ = Êε̇ Newton (fluid) (86.5)

σ = Eε+ Êε̇ Kelvin–Voigt (solid) (86.6)

σ + τ σ̇ = Eε+ Êε̇ Poynting–Thomson–Zener (solid) (86.7)

σ + τ σ̇ = Êε̇ Maxwell (fluid) (86.8)

σ + τ σ̇ = Êε̇+
ˆ̂
Eε̈ Jeffreys (fluid) (86.9)

σ + τ σ̇ = Eε+ Êε̇+
ˆ̂
Eε̈ Kluitenberg–Verhás (solid) (86.10)

The words in parentheses display whether the given model is applicable for a solid or
a fluid (rheological extension of a simple material, like (83.4) in Sect. 4.8, b is related
to ε̇). This can be determined as follows: we take the ‘slow’ limit, by keeping for
each quantity only its lowest time derivative. If the result is a Hooke model then the
material is a solid; if it’s a Newton model then the material is a fluid.

One message of the above models is that, when one measures σ and ε and plots
σ(t) versus ε(t), it should not be viewed as the plot of a function σ(ε) . If the
experiment is repeated at some other speed, the plot can well be quite different,
indicating that some above – or more general – model is needed to describe the
given material. Rocks, for example, be so ‘solid’ by our intuition, do typically require
some rheological extension beyond the naive Hooke expectation [or any other elastic
presupposition σ(ε)].109

109In parallel, since ε ≡ εt0 is not a state quantity, even elastic models should use some D-like
state quantity as variable of constitutive functions.
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4.10 Rheology of solids – 3D treatment

In the 3D version of the previous section, the additional variable is a symmetric tensor
η in accord with that we wish to describe additional – irreversible – mechanical stress
via it and stress is a symmetric tensor (and elastic deformedness, D, also). (84.1)
and (84.3) are generalized to

e(T,D,η) = cT +
Edev

2ϱ
tr
(
DdevDdev)+ Esph

2ϱ
tr
(
DsphDsph)

+
1

2
tr
(
ηdevηdev)+ 1

2
tr
(
ηsphηsph) , (87.1)

σ = σel + σirr

(62.7)

= EdevDdev + EsphDsph + σdev
irr + σsph

irr (87.2)

[cf. (64.1)]. Entropy production proves now to require positive definiteness of

tr
(
σirrḊ

)
− ϱ tr (ηη̇) =

[
tr
(
σdev

irr Ḋdev
)
− ϱ tr

(
ηdev η̇dev

)]
+
[
tr
(
σsph

irr Ḋsph
)
− ϱ tr

(
ηsph η̇sph

)]
. (87.3)

Deviatoric and spherical tensors are linearly independent so two separate sets of
Onsagerian equations emerge:

σdev
irr = λdev

11 Ḋdev + λdev
12

(
−ϱη̇dev

)
, σsph

irr = λsph
11 Ḋsph + λsph

12

(
−ϱη̇sph

)
, (87.4)

ηdev = λdev
21 Ḋdev + λdev

22

(
−ϱη̇dev

)
, ηsph = λsph

21 Ḋsph + λsph
22

(
−ϱη̇sph

)
. (87.5)

Consequently, everything said in the 1D case can be repeated, twice: once for the
deviatoric part and once for the spherical part. (The two parts are completely
independent.) Among others, the elimination leads to

σdev + τdevσ̇dev = EdevDdev + ÊdevḊdev +
ˆ̂
EdevD̈dev , (87.6)

σsph + τ sphσ̇sph = EsphDsph + ÊsphḊsph +
ˆ̂
EsphD̈sph , (87.7)

In the special case of uniaxial processes, similarly to how (62.7)–(62.8) are found
from (61.6)–(61.7), two one-component equations emerge:

σ + τdevσ̇ = Edev(D −D⊥)+ Êdev
(
Ḋ − Ḋ⊥

)
+

ˆ̂
Edev

(
D̈ − D̈⊥

)
, (87.8)

σ + τ sphσ̇ = Esph(D + 2D⊥)+ Êsph
(
Ḋ + 2Ḋ⊥

)
+

ˆ̂
Esph

(
D̈ + 2D̈⊥

)
. (87.9)
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In many mechanical experiments, transversal strain is not measured, hence, then
only σ (t) and D (t) are available (remember: longitudinal strain provides D (t)
only if D (t0) = 0 ). To see what relationship between σ (t) and D (t) follows from
(87.8)–(87.9), we need to eliminate D⊥(t). This can be done, either directly, or via
identifying and applying the operators behind, which operators are polynomials of
the time derivative operator d

dt .

First, let us see the direct approach, on the example of the Kelvin – Hooke model,
i.e., when one has a Kelvin model in the deviatoric part and a Hooke one in the
spherical part:

σdev = EdevDdev + ÊdevḊdev , (88.1)

σsph = EsphDsph , (88.2)

which for uniaxial processes gives

σ = Edev(D −D⊥)+ Êdev
(
Ḋ − Ḋ⊥

)
, (88.3)

σ = Esph(D + 2D⊥) : (88.4)

Expressing D⊥ from (88.2), substituting it into (88.1), moving all σ related terms
to the lhs, and dividing by the coefficient of σ , one obtains

σ +
Êdev

Edev + 2Esph σ̇ =
3EsphEdev

Edev + 2EsphD + 3
EsphÊdev

Edev + 2Esph Ḋ . (88.5)

Therefore, this emergent uniaxial rheology is actually a Poynting–Thomson model.
Observe that, on the rhs, the coefficient of D is Young’s modulus [cf. (63.1)], as
expected.

At the general level of a Kluitenberg–Verhás – Kluitenberg–Verhás model pair,
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(87.8)–(87.9), the result is

σ +
Êdev + 2Êsph + τ sphEdev + 2τdevEsph

Edev + 2Esph σ̇

+
ˆ̂
Edev + 2

ˆ̂
Esph + τ sphÊdev + 2τdevÊsph

Edev + 2Esph σ̈

+
τ sph ˆ̂

Edev + 2τdev ˆ̂
Esph

Edev + 2Esph σ̇̇̇ =
3EsphEdev

Edev + 2EsphD (89.1)

+ 3
EsphÊdev + EdevÊsph

Edev + 2Esph Ḋ

+ 3
Edev ˆ̂

Esph + ÊsphÊdev + Esph ˆ̂
Edev

Edev + 2Esph D̈

+ 3
Êdev ˆ̂

Esph + Êsph ˆ̂
Edev

Edev + 2Esph Ḋ̇̇

+
3
ˆ̂
Esph ˆ̂

Edev

Edev + 2Esph D̈̈ .

This emergent uniaxial rheology contains, therefore, third and fourth time deriva-
tive as well, and contains the elementary coefficients in rather intertwined combina-
tions. Now imagine that you wish to fit the rheological coefficients on measurement
data, assuming this equation. Measurement data always contain some error/noise,
which gets enlarged when time derivatives are defined – by any method – from
the measured time series. Furthermore, even if you succeed in obtaining the co-
efficients in (89.1) 110, you should be able to calculate the elementary coefficients
τdev, Edev, Êdev,

ˆ̂
Edev, τ sph, Esph, Êsph,

ˆ̂
Esph. However, the set of nonlinear equa-

tions to solve has multiple solutions, which can be determined only numerically,
with errors further amplified.111

What to do? Let us measure D⊥(t) as well. Then we are able to the combinations
D − D⊥ , D + 2D⊥ so the task of determining eight elementary coefficients has
been reduced to determining them in two independent groups by fitting on (87.8) and
(87.9) separately, where both equations contain directly the elementary coefficients,
not nonlinearly derived ones.
110You won’t.
111The noise can easily lead to equations with complex solutions, rendering the approach useless.
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rheological fitted standard
coefficient value error

τdev/s 0.3600 ±0.0659

Edev/GPa 0.8612 ±0.0556

Êdev/(GPa ·s) 0.4724 ±0.0686
ˆ̂
Edev/

(
GPa ·s2

)
0.0029 ±0.0010

τ sph/s 0.2329 ±0.0904

Esph/GPa 4.5708 ±1.0392

Êsph/(GPa ·s) 1.8566 ±0.4401
ˆ̂
Esph/

(
GPa ·s2

)
0.0013 ±0.0220

Table 90.1 Fitted rheological coefficients for the data taken on the polyamide-6 sample shown
in Sect. 3.12. Results taken from paper DOI:10.3311/PPci.8628.

In addition to measuring ε⊥t0 , the best is to measure the temperature of the sample as
well, as already emphasized in Sect. 3.12. Then we have additional information re-
garding reversible and irreversible processes: Joule–Thomson, rheological and plastic
each. Thermodynamics helps mechanics to separate these aspects.

4.11 Plasticity of solids

Starting here again with the 1D treatment, the temperature dependence of lR has
been seen a reversible type of the change of relaxed length: if we return to an initial
temperature, relaxed length returns to its initial value. Plasticity is an another type
of change of lR, and that is irreversible. As we see below, it is irreversible not only
in the everyday sense that you pull the spring of your ballpoint pen to three times
longer and then you cannot push it back to its initial size: it is accompanied by
entropy production, too.

If the change rate of relaxed length stems from two sources: temperature change and
plastic change,

dlR
dt

= lRα
dT

dt
+
( ∗
lR

)
plastic

(90.1)

then calculation (49.3) contains an extra term,

L = Ḋ + αṪ + Z , Z =

( ∗
lR

)
plastic

lR
, (90.2)

https://doi.org/10.3311/PPci.8628
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where Z can be named plastic change rate. It provides an additive extra contribution
in small-deformation strain (49.6), in addition to deformedness change and thermal
expansion:

εt0(t) = [D(t)−D(t0)] + α∆Tt0(t) +

ˆ t

t0

Z
(
t̃
)
dt̃ = (εel)t0(t) + (εth)t0(t) +

(
εpl
)
t0
(t).

(91.1)

Z has to be given – like interaction functions are given – as the function of the state
variables as well as change rate type ones like B is for simple materials. Without
any attempt to provide a complete treatment of such flow rules, for illustration,
presented here is just one plausible example for such a flow rule:

Z =

{
γσ σ̇ if |σ| ≥ σyield and d

dt |σ| ≥ 0 ,

0 otherwise ,
(91.2)

with a positive γσ and a positive yield stress value σyield. In words, plastic change
rate is proportional to stress change rate, but is nonzero only if (the magnitude
of) stress is larger than a certain limit (a ‘strength’ type characteristic value of the
material) and only during loading (when the magnitude of stress increases) – it is
zero during unloading112. Larger γσ means that smaller σ̇ is needed for a Z; the
limit of sending γσ to infinity and, correspondingly, σ̇ to zero is the so-called ideal
plasticity where the magnitude of stress cannot exceed the yield stress value. For
that limiting model of plasticity, not (91.2) but some other formula is needed to
predict Z.113 Fortunately, (91.2) with some ordinary finite γσ is typically closer to
reality.

If we neglect thermal expansion and start with an initial state with D(t0) = 0 then,
during loading above the yield limit, (91.2) tells

ε̇t0 = Ḋ + Z = Ḋ + γσ σ̇ = Ḋ +

σ=ED︸ ︷︷ ︸
γσEḊ = (1 + γσE) Ḋ = (1 + γσE)

σ̇

E
, (91.3)

σ̇

ε̇t0
=

E

1 + γσE
, (91.4)

that is, the effective Young’s modulus has decreased from E to a somewhat lower
value. Such a behaviour is observed indeed – see, e.g., Figure 54.1 –, justifying that
(91.2) is a realistic (though probably simplistic) model.
112when the level of ‘torture’ of the material weakens
113In the 3D treatment, there is a yield stress (hyper)surface in the space of possible stress tensor

values, and the whole story is more involved.
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Note that d
dt |σ| ≥ 0 can also be formulated as

d

dt

(
|σ|2

)
≥ 0 ,

d

dt

(
σ2
)
≥ 0 , σσ̇ ≥ 0 . (92.1)

Without plasticity, solids with elasticity and thermal expansion have been seen re-
versible in the thermodynamical sense as well, i.e., there has been no entropy produc-
tion. Here, the extra term 1

ϱσZ in ∗w = 1
ϱσL leads to a nonzero entropy production

term114

1

ϱT
σZ . (92.2)

Thermodynamics requires positive definiteness of this expression. For instance, the
above example (91.2) fulfils this [cf. (92.1)]. Observe that ‘no plastic change during
unloading’ is an essential part for this: thermodynamics forbids plastic change during
unloading! 115

Also without showing the details, one finds that the Joule–Thomson temperature
change during adiabatic loading seen in Sect. 3.12 is modified to

c Ṫ
∣∣∣
s
= −Eα

ϱ
T Ḋ

∣∣∣
s
+

1

ϱ
σZ , (92.3)

in words: plastic work increases temperature. This has been seen in Figure 54.1,
where plasticity originated warming overplayed Joule–Thomson originated cooling.

In the 3D treatment, (90.2) is generalized to

Ḋ+ αṪ1+ Z = LS = ε̇t0 (92.4)

[cf. (58.1)] with the symmetric plastic change rate tensor Z. For metals, Z may be
purely deviatoric (Zsph = 0 ) corresponding to volume-preserving plastic change.
For materials with different microscopic/mesoscopic structure (with voids and other
spatial structures), e.g., for rocks, Zsph may also be relevant.

For uniaxial processes, (92.4) is equivalent to the two component equations

ε̇t0 = Ḋ + αṪ + Z , (92.5)

ε̇⊥t0 = Ḋ⊥ + αṪ + Z⊥ = −νḊ + αṪ + Z⊥ . (92.6)

114The calculation can be done basically analogously to (85.1), just here we have no irreversible
stress contribution nor energy contribution but have irreversible kinematic contribution.
115At least, in the framework presented here. If rheology or other internal processes are also

present then an Onsagerian cross-effect can allow plastic change during unloading, at the price of
some other irreversible effect.
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[cf. (58.6)–(58.7) and (63.2)]. If Zsph = 0 then Z⊥ = − 1
2Z .

The yield condition in a 3D generalization of the flow rule (91.2) must also be for-
mulated in terms of the stress tensor, e.g., containing scalar invariants of σ like
tr
[(
σdev

)2] .

The entropy production rate density formula (92.2) and the change rate of tem-
perature (92.3) are generalized to contain tr (σZ) [and see (64.4)]. For uniaxial
processes, tr (σZ) gets simplified to σ Z [analogously to (63.6)].

Finally, some summarizing comments are that, if elasticity, thermal expansion,
rheology and plasticity are each present then motion of the material is composed of
elastic extension, thermal expansion and plastic change, stress is composed of elastic
and rheological part. Onsagerian cross-effect between rheology and plasticity can
also be present, leading to a 3 × 3 Onsagerian coupling matrix mixing LS, η, and
Z, leading to rather complicated possible behaviours. Finally, gradual degradation
of the structure of the material – caused by any of the above aspects (elasticity,
thermal expansion, rheology or plasticity) can also be described via irreversible ther-
modynamics, for example, with the aid of a scalar irreversible variable (sometimes
called damage). Damage can be so remarkable that failure can also occur (the sam-
ple breaks). Failure116 may be attributed to loss of thermodynamical asymptotic
stability, for example, in the form that concavity of entropy gets violated in some
region of the state space. Notably, all these can be modelled in the 2 framework.

4.12 The Moutier–Serrier–Reitlinger–Chambadal–Novikov–
Curzon–Ahlborn engine

The model considered here stands between 1 and 2 , and was a historically impor-
tant step for the development concerning 2 . Here, heat is already treated via an
interaction function, the related irreversibility is acknowledged, and time is explicitly
considered, but time dependence of the process is simplified – constancy during heat
absorption and during heat release.

This kind of model was proposed by many independent authors during the history of
thermodynamics117, hence the many names; hereafter, only the abbreviation MSR-
CNCA will be used.

We need to start with recalling briefly some properties of the Carnot en-
gine/cycle/model, also fixing some notations. The Carnot engine receives heat Q+

116And, according to Verhás (see his book listed in Sect. 1.2), plasticity, too.
117The – probably incomplete – timeline is: J. Moutier (1872) – L. Serrier (1888) – H. B. Reitlinger

(1929) – P. Chambadal (1957) – I. Novikov (1957) – F. L. Curzon & B. Ahlborn (1975). See M. Feidt,
Entropy 19 (2017) 369, https://doi.org/10.3390/e19070369.

https://doi.org/10.3390/e19070369
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at constant temperature T+ from an environment (reservoir) that also has temper-
ature T+. Correspondingly, the entropy of the engine increases by ∆S+ = Q+/T+.
Then comes an adiabatic subprocess when work is done and the temperature of
the engine drops to T−, the temperature of another environment, to which the en-
gine releases heat, subsequently, the heat-type energy change being Q− < 0. At
last, an adiabatic temperature increase happens, back to T+. The energy loss
characterized by Q− is necessary because it is the corresponding entropy change,
∆S− = Q−/T− = −∆S+ < 0 that brings back entropy, a state quantity, back to its
initial value – for a cycle, all state quantities have to return to their original value.

Since the change of internal energy (another state quantity) along a complete cycle
is also zero, the total work-type energy change can be expressed with the aid of the
first law of thermodynamics:

0 = ∆E = Q+ +Q− +W =⇒ W = −Q+ −Q−. (94.1)

Observing

Q−

Q+
=

T−∆S−

T+∆S+
=

T−

T+
· ∆S−

∆S+︸ ︷︷ ︸
−1

= −T−

T+
, (94.2)

we obtain for the thermal efficiency the following result:

η =
−W

Q+
=

Q+ +Q−

Q+
= 1 +

Q−

Q+

(94.2)

= 1− T−

T+
. (94.3)

The MSRCNCA model is the generalization when the engine itself still follows a
Carnot cycle with temperatures T+ and T− but it receives the heat Q+ during
a specified time interval t+ from an environment with temperature T> with the
constant heating rate

∗
Q+ = −Γ+(T+ − T>) , Q+ = t+

∗
Q+ > 0 , (94.4)

and releasing heat occurs analogously, during a time interval t−, towards an envi-
ronment with temperature T<, according to the constant heating rate

∗
Q− = −Γ−(T− − T<) , Q− = t−

∗
Q− < 0 (94.5)

(Γ+, Γ− being positive constant coefficients). The total time for the cycle is t◦, and
let λ denote the ratio (t+ + t−)/t◦. While thermal efficiency is indeed an informative
number, in the current, more realistic, setting, we are able to pose and answer
practically more interesting questions as well. Such a question is as follows: with
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fixed engineering and environmental parameters Γ+, Γ−, T>, T<, t+, t−, t◦, at what
operating temperatures T+, T− will the engine offer highest average useful power?

The average useful power can be expressed and re-expressed as follows:

Π =
−W

t◦
= λ

−W

t+ + t−
= λ

Q+ +Q−

t+ + t−
= λ

Q+ +Q−
Q+

Γ+(T>−T+) +
Q−

Γ−(T<−T−)

=

= λ
1 +Q−/Q+

1
Γ+(T>−T+) +

Q−/Q+

Γ−(T<−T−)

(94.2)

= λ
1− T−/T+

1
Γ+(T>−T+) −

T−/T+

Γ−(T<−T−)

=

= λΓ+(T> − T+)Γ−(T< − T−)
1− T−/T+

Γ−(T< − T−)− Γ+(T> − T+)(T−/T+)
=

= λΓ+Γ−
(T> − T+)(T< − T−)(T+ − T−)

Γ−(T< − T−)T+ − Γ+(T> − T+)T−
. (95.1)

In order to obtain a maximum, first let us check whether the boundary of the allowed
region for the points (T+, T−) contains a local maximum. Now, the region in question
is determined as T< ≤ T− ≤ T+ ≤ T> . If T+ = T> then Q+ = 0 so there is no
received heat from which the engine could produce work. Similarly, if T− = T< then
there is zero released heat, with accompanying zero released entropy ∆S−, thus with
zero gained entropy ∆S+ and, hence, with zero received heat which again means zero
work. Finally, T+ = T− means zero thermal efficiency [see (94.3)] and, consequently,
zero work [see (94.3) again].

Next, for a maximum within the allowed domain, one has to solve the set of equations

∂Π

∂T+

∣∣∣∣
T−

= 0 ,
∂Π

∂T−

∣∣∣∣
T+

= 0 . (95.2)

The calculation is not easy but doable. While the solution
(
T opt
+ , T opt

−
)

itself is not

too illuminating to see, the ratio of the two optimal temperatures, T opt
−

T opt
+

is remarkable.
Namely, one finds that this ratio is independent of all details of the engine and
depends only on the environmental temperatures:

T opt
−

T opt
+

=

√
T<

T>

. (95.3)

It also follows then that

ηopt
MSRCNCA

(94.3)

= 1−

√
T<

T>

≤

(
1−

√
T<

T>

)(
1 +

√
T<

T>

)
= 1− T<

T>

= ηopt
Carnot .

(95.4)
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The following table compares this optimal RNCNA thermal efficiency to the corre-
sponding Carnot efficiency, and to observed efficiency, in some real-life power plants.

Power plant T< T> ηCarnot ηopt
MSRCNCA ηobserved

West Thurrock (UK) coal-fired power plant 25 ◦C 565 ◦C 0.64 0.40 0.36
CANDU (Canada) nuclear power plant 25 ◦C 300 ◦C 0.48 0.28 0.30
Larderello (Italy) geothermal power plant 80 ◦C 250 ◦C 0.33 0.178 0.16

Table 96.1 Examples taken from https://en.wikipedia.org/wiki/Endoreversible_thermodynamics
(2017-01-27).

We can observe that, despite the simplifying approximations, the MSRCNCA ef-
ficiency provides a surprisingly good estimate to the real-life one, contrary to the
Carnot efficiency.



5.1 Balances 97

5 Basics of continuum thermodynamics

5.1 Balances

In 4 , equations can be classified into four classes:

• Constitutive relationships,
• Kinematic relationships – the motion of the continuum requires new variables

like the velocity field v and the velocity gradient

L = v ⊗
←
∇ (in Cartesian components: Lij = ∂jvi) , (97.1)

which have relationships to already known kinematic ones like D,
• Balances = conservation ‘laws’ (properties) – for mass, momentum, energy etc.
• Interaction functions – among the various degrees of freedom of the material,

and with the environment, e.g., volumetric forces (gravity, electromagnetic),
heat (e.g., microwave heating), and Onsagerian relationships including cross-
effects.

Starting with the integral/global balance of mass: mass in a spatial domain V
that is fixed w.r.t. an inertial reference frame is, with customary notations,

mV =

˚
V
ϱ(t, r)dV , (97.2)

which changes in time as material flows out/in through the boundary A of V :

dmV
dt

=

˚
V

∂ϱ

∂t
dV = −

"
A
ϱv dA

Gauss’
theorem

= −
˚

V
∇ · (ϱv) dV , (97.3)

from which, at places where the fields ϱ,v are smooth enough, the differential/local
balance of mass follows:118

∂ϱ

∂t
= −∇· (ϱv)︸︷︷︸

im,
convective
current

= − (∇ϱ) ·v − ϱ∇·v . (97.4)

The operator combination

∂

∂t
+ v ·∇ (97.5)

118(97.3) holds for ‘any’ V around an r so we divide it by
˝

V dV and shrink V to r.
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appears in 4 frequently, is called material/comoving/substantial/substantive/. . .
time derivative, and tells how a quantity changes in time at a fixed material point
while it travels with velocity v. Hereafter, it is denoted simply by an overdot – but
do not confuse it with ∂

∂t . A convenient property of the material time derivative is
that it fulfils the rules

(fg)
·
= ḟg+ fġ ,

(
1

g

)·
= − ġ

g2
. (98.1)

Accordingly, (97.4) can be re-expressed as

ϱ̇ = −ϱ∇·v . (98.2)

With v = 1
ϱ , this says

− 1

v2
v̇ = −1

v
∇·v ,

v̇

v
= ϱv̇ = ∇·v

(97.1)

= trL
(60.6)

= trLS . (98.3)

For the balance of momentum, the density of which is ϱv , one obtains – details
omitted here119 –

ϱv̇ = ∇·σ + ϱg (98.4)

with the stress tensor σ (assumed symmetric) and volumetric field strength vector g
incorporating external gravitational and electromagnetic effects – hereafter, we take
g = 0 for simplicity.

In the balance of energy, we have the sum of kinetic energy density and internal
energy density,

1

2
ϱv2 + ϱe , (98.5)

to which the convective current density(
1

2
ϱv2 + ϱe

)
v (98.6)

is accompanied. There is conductive current density as well: heat current density
(loosely called ‘heat flux’) jE describes “heat” (internal energy) loss/gain through A ,
and the mechanical power σv of σ at A is another source of energy change. (Vol-
umetric heat sources and potential energy contributions stemming from g are cur-
rently neglected for simplicity). Sparing the somewhat lengthy calculation again120,
119Just one comment: (98.2) is also used.
120Now both (98.2) and (98.4) are utilized.
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the integral balance leads to the following differential one [partially anticipated in
(64.3)]:

ϱė = −∇·jE + tr (σL)
(60.8)

= −∇·jE + tr
(
σLS) . (99.1)

Especially, for a continuum at rest w.r.t. the given reference frame, v = 0 , involving
both L = 0 and that the process is isochoric,

ϱė = ϱ

(
∂e

∂T

∣∣∣∣
v

Ṫ +
∂e

∂v

∣∣∣∣
T

v̇︸︷︷︸
=0

)
(29.5)

= ϱcvṪ
(99.1)

= −∇·jE . (99.2)

Another special case, frequently appearing in practice, is when σdev = 0 . Then,
instead of σ = σsph , pressure p = −σsph is used customarily, and we find

tr (σL) = tr
(
σsph1L

) (98.3)

= −p
v̇

v
, (99.3)

ϱė− tr (σL) = ϱė+ p
v̇

v
= ϱ (ė+ pv̇) = ϱ

(
ė+ (pv)

· − ṗv
) (29.1)

= ϱ
(
ḣ− ṗv

)
. (99.4)

If pressure is constant in time (isobaric process) then this gets further simplified to

ϱė− tr (σL) = ϱḣ = ϱ

(
∂h

∂T

∣∣∣∣
p

Ṫ +
∂h

∂p

∣∣∣∣
T

ṗ

)
= ϱ

∂h

∂T

∣∣∣∣
p

Ṫ
(29.5)

= ϱcpṪ
(99.1)

= −∇·jE .

(99.5)

The balance of entropy reads, analogously,

ϱṡ = −∇·jS + πS (99.6)

with entropy current density jS , which is usually assumed to be, in analogue with
the Gibbs relation (25.7)121,

jS =
1

T
jE , (99.7)

and entropy production rate density πS , which, in the spirit of the second law of
thermodynamics, should be non-negative.
121Transferred entropy and internal energy through a given surface.
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5.2 Fourier heat conduction

Heat conduction is an irreversible process related to the term ∇· jE in the balance
of energy. Now let us consider two special cases, ‘rigid’ and isobaric processes, on
the same footing. In light of (26.3), both ϱcvṪ in (99.2) and ϱcpṪ in (99.5) can be
written as

ϱT
∂s

∂T

∣∣∣∣
pr
Ṫ , with |pr = |v=0 and |pr = |p , respectively. (100.1)

Then, both (99.2) and (99.5) read

ϱc|pr Ṫ = −∇·jE . (100.2)

We also have

ṡ = ṡ|pr =
∂s

∂T

∣∣∣∣
pr
Ṫ , ϱṡ = ϱ

∂s

∂T

∣∣∣∣
pr
Ṫ

(100.1)

=
1

T
ϱc|pr Ṫ

(100.2)

= − 1

T
∇·jE . (100.3)

Hence,

πS

(99.6)

= ϱṡ+∇·jS =

(100.3)

− 1

T
∇·jE +∇·

((99.7)

1

T
jE

)
= − 1

T
∇·jE +∇

(
1

T

)
· jE +

1

T
∇·jE = ∇

(
1

T

)
· jE . (100.4)

For isotropic materials, the Onsagerian way to ensure πS ≥ 0 is

jE = λOns∇
(
1

T

)
, λOns ≥ 0 . (100.5)

Here, the scalar multiplier λOns may well be temperature dependent. Writing (100.5)
further,

jE = λOns

(
− 1

T 2

)
∇T = −λOns

T 2
∇T = −λFou∇T , (100.6)

the latter being the classic form of Fourier’s model for heat conduction.122 Substi-
tuting it back to (100.2), one obtains

ϱc|pr Ṫ = ∇·(λFou∇T ) = (∇λFou) · ∇T + λFou △T

=
dλFou

dT
∇T · ∇T + λFou △T =

dλFou

dT
(∇T )

2
+ λFou △T , (100.7)

122The Fourier heat conduction coefficient λFou is also frequently denoted by k.
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where the first term on the underlined rhs – which term brings in nonlinearity un-
avoidably – is negligible only if the change of λFou is negligible in the range of
temperature changes involved.

It is to be mentioned that, if the material is not (so) simple – e.g., it is heterogeneous
(like composites, metal foams etc.) –, then (among others) (99.7) may need to be
generalized, for example, replacing in it the scalar factor 1

T with a tensor called Nyíri
multiplier, and the Fourier equation (100.7) becomes generalized to the Maxwell–
Cattaneo–Vernotte, the Green–Naghdi, the Jeffreys-type, or the Guyer–Krumhansl
equation, each bringing some higher time and/or space derivatives of T .

5.3 The Navier–Stokes equation

Now let us discuss a mechanical source of irreversibility. For brevity, now we neglect
heat conduction (which can be added later without difficulty; in isotropic materials,
vectorial heat conduction cannot have Onsagerian coupling to tensorial mechanics
so these two aspects can be summed up without complication).

What follows here is actually the 4 generalization of the 2 discussion of viscosity
seen in Sect. 4.6. We start with a simple material, and now assume that, in addition
to its reversibility related pressure

p0(e, v) = T
∂s

∂v

∣∣∣∣
e

(101.1)

[cf. (28.1)], there is an irreversibility related additional stress term as well:123

σ = −p01+ σirr . (101.2)

Utilizing for the first term what we have seen in (99.3),

ϱė = tr [(−p01+ σirr)L] = −p0
v̇

v
+ tr

[
σirrL

S] . (101.3)

Then entropy production rate density is [with jS = 0 , cf. (99.7) and that heat
conduction is now omitted]

πS

(99.6)

= ϱṡ = ϱ

(
∂s

∂e

∣∣∣∣
v

ė+
∂s

∂v

∣∣∣∣
e

v̇

)
(101.4)

(28.1)

= ϱ
1

T
ė+ ϱ

p0
T
v̇

(101.3)

=
1

T

(
−p0

v̇

v
+ tr

[
σirrL

S])+
1

v

p0
T
v̇ =

1

T
tr
[
σirrL

S] .
123However, for simplicity, entropy is not extended – that will lead to richer rheology as seen

before.
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For isotropic materials, non-negativity of this can be guaranteed analogously to 3D
rheology of solids seen around (87.3) but, here, there are less terms124 so the On-
sagerian solution is simpler:

σdev
irr = Êdev(LS)dev

, σsph
irr = Êsph (LS)sph

, Êdev, Êsph ≥ 0 . (102.1)

Put together,

σirr = Êdev
( (59.1)

LS −
(
LS)sph

)
+ Êsph (LS)sph

= ÊdevLS +
(
Êsph − Êdev) (LS)sph

.

(102.2)

Substituting this into the differential balance of momentum, (98.4), yields, after steps
omitted here,

ϱv̇ = −∇p0 + ϱg +
Êdev

2
△v +

2Êsph + Êdev

6
∇ (∇·v) (102.3)

for the simple case of constant Êdev, Êsph. Here, Êdev

2 is the classic viscosity
coefficient (denoted usually by η or µ), and 2Êsph+Êdev

6 is an independent other
coefficient, with various conventional notations but always related to the term
‘volume/volumetric viscosity’. In the approximation of an incompressible flow,
∇ · v = 0 , the second coefficient becomes irrelevant.

If you recall how considerably viscosity of cooking oil decreases when the frying
pan gets warm then you know the limitations of the assumption of constant Êdev,
Êsph. Deriving the extra terms for nonconstant coefficients is an exercise left to the
Reader.

5.4 Merits of the deviatoric–spherical decomposition

Finally, let us observe that the deviatoric–spherical decomposition of tensors has
turned out to be useful and insightful from various aspects:

• Hooke’s law for isotropic elastic solids is particularly simple [(61.6)–(61.7)];

• Thermal expansion of isotropic solids is present only in the spherical part, see
Sect. 3.14;

• Plastic change typically occurs only deviatorically, see Sect. 4.11;
124No η related terms.
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• Rheology of isotropic solids gets separated to two much simpler submod-
els, making the otherwise practically intractable situation handleable, see
Sect. 4.10;

• Viscosity turns out to be doubled, as seen in this Section, with volumetric
viscosity being possibly remarkable for compressible flows.
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6 Analytical and numerical computer calculations

Among softwares that are capable to perform analytical as well as numerical math-
ematical calculations, Maxima125 is a free and cross-platform one. As all these
programs (and as being a pioneering software in its field), Maxima also has its lim-
itations and oddities (maybe more limitations and more oddities than the nonfree
ones) but is definitely good enough for basic and medium-level work.126

Below follow some Maxima codes, partly to serve as an aid for computer solutions of
thermodynamical problems, and partly to provide examples of the syntax of Max-
ima.

6.1 Ideal gas

Whenever we face at quantities that have dimensions (m, s, kg etc. and combina-
tions), let us try to make them dimensionless using an enough number of nonzero
dimensionless constants appearing in the situation. This makes it safe to work with
numerical computer calculations, where it is not possible (or, at least, is nontrivial)
to treat dimensionful quantities. In case of the ideal gas, we have only one such
constant, R, which is not enough for making everything dimensionless. Then, for
plotting, we have to choose some arbitrary units (like some SI units), and we have
to remind ourselves time and again about this choice.

/* Ideal gas */

/* It is safer to claim everything to be positive: */
assume( T > 0, p > 0, s > 0, R > 0, cv > 0, v0 > 0, e0 > 0, _Pa > 0, _m3perkg > 0 );
assume( v > v0, e > e0 );

/* Constitutive functions: */
p_Tv : R*T/v;
e_Tv : cv*T;

/* For checking material stability: */
diff(e_Tv, T); diff(p_Tv, v);

/* In the natural variables (e, v) of s: */
solve( e_Tv = e, T );
solve( e_Tv = e, T )[1];
T_ev : rhs( solve( e_Tv = e, T )[1] );
p_ev : subst( T_ev, T, p_Tv ); /* valid but not recommended syntax */
p_ev : subst( [T = T_ev], p_Tv ); /* valid and recommended syntax */ 0$

/* Checking the entropic property, in two ways: */

125Install it together with its (probably best) GUI, wxMaxima.
126And higher as well: an acquaintance of the author is said to have produced all his results for

his PhD in Maxima.
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diff(1/T_ev, v) - diff(p_ev/T_ev, e);
diff(e_Tv, v) - T*diff(p_Tv, T) + p_Tv;

/* Calculating specific entropy: */
s1_ev : integrate( subst( [v = v0, e = eint], 1/T_ev ), eint, e0, e );

s1_ev_dimgood : cv * log(e/e0); radcan( s1_ev_dimgood - s1_ev );

s1_ev : s1_ev_dimgood;

s2_ev : integrate( subst( [v = vint], p_ev/T_ev ), vint, v0, v );

s2_ev_dimgood : R * log(v/v0); radcan( s2_ev_dimgood - s2_ev );
s2_ev : s2_ev_dimgood;
s_ev : s1_ev + s2_ev; /* s0 is chosen to be zero */ 0$

/* Chemical potential: */
mu_ev : e - T_ev * s_ev + p_ev * v; mu_Tv : subst( [e = e_Tv], mu_ev );

/* The only constant R cannot make everything dimensionless, therefore:
Dimensionless pressure: pd will have the meaning p/_Pa
Dimensionless specific volume: vd will have the meaning v/_m3perkg
Dimensionless spec. int. en.: ed will have the meaning e/(_Pa*_m3perkg)
Dimensionless temperature: Td will have the meaning R*T/(_Pa*_m3perkg) */

pd_Tdvd : subst( [T = _Pa*_m3perkg/R*Td, v = vd*_m3perkg], p_Tv/_Pa );

ed_Tdvd : subst( [T = Td/R*_Pa*_m3perkg, v = vd*_m3perkg], e_Tv/(_Pa*_m3perkg) );

Td_edvd : rhs( solve( ed_Tdvd = ed, Td )[1] );

pd_edvd : subst( [Td = Td_edvd], pd_Tdvd );

aux : [e = _Pa*_m3perkg*ed, e0 = _Pa*_m3perkg*ed0, v = _m3perkg*vd, v0 = _m3perkg*vd0]$
sd_edvd : subst( aux, s_ev/R ); /* otherwise this line is too long. */;

radcan( ( cv/R * log( ed/ed0 ) + log( vd/vd0 ) ) - sd_edvd );
sd_edvd : cv/R * log( ed/ed0 ) + log( vd/vd0 )$

/* Plots: Isothermal lines: */
pd_Td_vd : subst( [Td = 1], pd_Tdvd );
wxplot2d( [pd_Td_vd], [vd, 1, 3] )$ /* ; does the same here. */ 0$

/* (Reversible) adiabatic lines: */
ed_sdvd : rhs( solve( sd_edvd = sd, ed )[1] );

pd_sd_vd : subst( [ed = ed_sdvd, ed0 = 1, vd0 = 1, sd = 1, cv = 3/2*R], pd_edvd );

wxplot2d( [pd_Td_vd, pd_sd_vd], [vd, 1, 3] )$

/* Concavity of specific entropy: */
wxplot3d( subst( [ed0 = 1, vd0 = 1, cv = 3/2*R], sd_edvd ), [ed, 1, 5], [vd, 1, 5] )$
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plot3d( subst( [ed0 = 1, vd0 = 1, cv = 3/2*R], sd_edvd ), [ed, 1, 5], [vd, 1, 5] )$

See the comment lines for explanations. The last plotting command uses an external
plotting program like Gnuplot127, depending on configuration settings.

Note the convention for variable names: for example, the function p(T, v) is rep-
resented via the expression named p_Tv. Always try to store much information in
variable names – it is safer than storing them in comments/documentation.

6.2 Plotting discrete points, colour-blind friendly colours

When you obtain numerical results, you may need to plot discrete points (but maybe
as connected by the computer so that your result looks continuous). The following
code shows examples of the syntax involved.

In parallel, it contains a collection of colour-blind friendly colours. In a group of
25 people, you can expect at least one colour-blind person128. For them, pure red,
green and blue are the worst.129 To create figures that are intelligible for colour-blind
people, you have various choices (in suggested order):

• using black only, apply various different line widths and types (solid, dashed,
dash-dotted etc.), as well as various different symbols (filled and void circle,
rectangle, triangle etc.),

• use various shades of grey only,
• choose colour-blind friendly colours (see the RGB codes of such a palette128 in

the example below).

/* Plotting discrete points [x1, y1], [x2, y2], ... : we use
two lists: xl = [x1, x2, ...] and yl = [y1, y2, ...]
Example: plotting circles using discrete points:
(also an example for a for-loop and for color-blind-friendly colors)

RGB 0-255 RGB % CMYK % Hue o
----------- -------- --------------- ----- */

cbfyellow : "\#f0e442"$ /* 240 228 66 95 90 25 10 5 90 0 56 */
cbforange : "\#e69f00"$ /* 230 159 0 90 60 0 0 50 100 0 41 */
cbfred : "\#d55e00"$ /* 213 94 0 80 40 0 0 80 100 0 27 */
cbfmagenta : "\#cc79a7"$ /* 204 121 167 80 60 70 10 70 0 0 326 */
cbflightblue : "\#56b4e9"$ /* 86 180 233 35 70 90 80 0 0 0 202 */
cbfblue : "\#0072b2"$ /* 0 114 178 0 45 70 100 50 0 0 202 */
cbfgreen : "\#009e73"$ /* 0 158 115 0 60 50 97 0 75 0 164 */
greyl : ["\#ffffff", "\#eeeeee", "\#dddddd", "\#cccccc", "\#bbbbbb", "\#aaaaaa",

"\#999999", "\#888888", "\#777777", "\#666666", "\#555555", "\#444444",
"\#333333", "\#222222", "\#111111", "\#000000"]$

127which may also be provided by the Maxima installer
128Kei Ito and Masataka Okabe, August, 2002; https://jfly.uni-koeln.de/color/ .
129(For those interested: the author himself is not colour-blind. He is left-handed.)
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x1l : makelist()$ y1l : makelist()$ x2l : makelist()$ y2l : makelist()$
x3l : makelist()$ y3l : makelist()$ x4l : makelist()$ y4l : makelist()$
x5l : makelist()$ y5l : makelist()$ x6l : makelist()$ y6l : makelist()$
x7l : makelist()$ y7l : makelist()$ x8l : makelist()$ y8l : makelist()$
R1 : 0.88$ R2 : 2.04$ R3 : 3.2$ R4 : 4.36$
R5 : 5.52$ R6 : 6.68$ R7 : 7.84$ R8 : 9$ N : 50$
for phi : 0 thru 2*%pi step 2*%pi/N do (

x1l : append( x1l, [ R1*cos(phi) ] ), y1l : append( y1l, [ R1*sin(phi) ] ),
x2l : append( x2l, [ R2*cos(phi) ] ), y2l : append( y2l, [ R2*sin(phi) ] ),
x3l : append( x3l, [ R3*cos(phi) ] ), y3l : append( y3l, [ R3*sin(phi) ] ),
x4l : append( x4l, [ R4*cos(phi) ] ), y4l : append( y4l, [ R4*sin(phi) ] ),
x5l : append( x5l, [ R5*cos(phi) ] ), y5l : append( y5l, [ R5*sin(phi) ] ),
x6l : append( x6l, [ R6*cos(phi) ] ), y6l : append( y6l, [ R6*sin(phi) ] ),
x7l : append( x7l, [ R7*cos(phi) ] ), y7l : append( y7l, [ R7*sin(phi) ] ),
x8l : append( x8l, [ R8*cos(phi) ] ), y8l : append( y8l, [ R8*sin(phi) ] ),

)$
wxplot2d( [ [ discrete, x1l, y1l ], [ discrete, x2l, y2l ],

[ discrete, x3l, y3l ], [ discrete, x4l, y4l ], [ discrete, x5l, y5l ],
[ discrete, x6l, y6l ], [ discrete, x7l, y7l ], [ discrete, x8l, y8l ] ],
[color, cbfyellow, cbforange, cbfred, cbfmagenta,

cbflightblue, cbfblue, cbfgreen, black],
[xlabel, "Eight circles"], [ylabel, "In color-blind-friendly colors"],
[legend, false], [x, -10, 10], [y, -10, 10], [yx_ratio, 1] );

wxplot2d( [ [ discrete, x1l, y1l ], [ discrete, x2l, y2l ],
[ discrete, x3l, y3l ], [ discrete, x4l, y4l ], [ discrete, x5l, y5l ],
[ discrete, x6l, y6l ], [ discrete, x7l, y7l ], [ discrete, x8l, y8l ] ],
[color, greyl[2], greyl[4], greyl[6], greyl[8],

greyl[10], greyl[12], greyl[14], greyl[16]],
[xlabel, "Eight circles"], [ylabel, "In shades of grey"], [legend, false],
[x, -10, 10], [y, -10, 10], [yx_ratio, 1] );

The outcomes are:

Figure 107.1 Plotting eight circles in colour-blind friendly colours and in shades of grey.
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6.3 Interval halving / bisection method

A simple yet efficient algorithm for finding a root of an algebraic equation f(x) = 0
in an interval xleft ≤ x ≤ xright is realized in the next example. We assume that f
is positive at one endpoint and negative at the other one. Then a continuous f has
at least one root within the interval.

At each step, the algorithm shrinks the size of the interval to half size by shifting
either the left or the right endpoint into the midpoint, depending on whether the
value of f at the midpoint is positive or negative – the new interval will still have one
endpoint with positive f and another with negative f . We continue until the size of
the interval – or, alternatively, the value of f – is small enough for our purposes.

In case we initially know only an xleft but are sure a root x > xleft must exist then let
us choose a ∆x > 0 and try xleft+∆x , xleft+2∆x , xleft+4∆x , . . . , xleft+2n∆x ,
. . . as candidates for xright. This is an efficient means of finding an xright.

/* Example for interval halving (https://en.wikipedia.org/wiki/Bisection_method): */
/* solving exp(-x) = x in the interval [0, 1] */

fx : exp(-x) - x$ /* we will seek an x where fx is zero. */
/* First a visual check about the task: */
wxplot2d( [fx], [x, 0, 1], [color, black] );
/* we read off that the root is a bit less than 0.6. How good this guess is: */
subst( x = .6, fx );
wxplot2d( [fx], [x, 0.5, .7], [color, black] );
/* we read off that the root is around 0.56. How good this guess is: */
subst( x = .56, fx );

x_left : 0.$ x_right : 1.$ /* initial endpoints of the interval. */
/* We enforced Maxima to treat them and subsequent numbers as floating-point. */
fx_left : subst( x = x_left, fx )$ fx_right : subst( x = x_right, fx )$
if fx_left > 0 then ( sign_left : 1 ) else ( sign_left : -1 )$
if fx_right > 0 then ( sign_right : 1 ) else ( sign_right : -1 )$
sign_left; sign_right; /* we check that the signs are opposite. */
steps : 1$ /* it will register the number of steps performed. */

while abs( fx_right - fx_left ) > 1e-6 do ( /* we will stop only when the function
is near zero up to 1e-6 = 10^(-6) at the approximate root. */
x_new : 0.5 * ( x_left + x_right ) /* 0.5 instead of 1/2 to stay floating-point. */,
fx_new : subst( x = x_new, fx ),
if fx_new > 0 then ( sign_new : 1 ) else ( sign_new : -1 ),
if sign_new = sign_left then (

x_left : x_new, fx_left : fx_new
) else (

x_right : x_new, fx_right : fx_new
),
steps : steps + 1

)$
steps;
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/* Checking whether the found root is around 0.56: */
x_new; subst( x = x_new, fx );

The outcomes are:

Figure 109.1 Behaviour of e−x − x around its root within the interval [0, 1] (outputs of the
plotting commands).

Approximate root How near to zero
From the first plot: 0.6 0.051188
From the second plot: 0.56 0.011209
Interval halving (22 steps): 0.567143 5.124564e-7

6.4 Finite difference method – example 1

In the subsequent example, a first order ordinary differential equation is solved nu-
merically, via the simplest finite difference method.

Note that solving differential equations numerically is an art in itself. Here, the
analogous advice applies as for choosing a model for a real-life situation: choose a
more complicated one only if you have a severe performance reason for it. When
switching to a more elaborate numerical scheme, you may gain large performance
improvement but you risk losing a lot of time and effort by coding and debugging.
(Will you meet the deadline?)

/* Example 1 for the finite difference method
(https://en.wikipedia.org/wiki/Euler_method):
solving d f / d t = -k*f(t) with initial condition f(0) = f0 > 0 .
Using units fu = f0 and tu = 1/k , we introduce the dimensionless
quantities fd = f/fu, td = t/tu , with which the problem becomes
d fd / d td = - fd(td), fd(0) = 1 .
The Euler scheme is: fd_new = fd_old + (-fd_old)*Dtd .
For this problem, we know the exact solution, too,
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so we will compare the two solutions. */

/* Plotting discrete points [x1, y1], [x2, y2], ... : now we use
one list of the style xy_list = [ [x1, y1], [x2, y2], ... ] */

tdfd_list : makelist()$ tdfd_exact_list : makelist()$
td_final : 4.$ fd_old : 1.$ Dtd : 0.1$
tdfd_list : append( tdfd_list, [ [0, fd_old] ] )$
tdfd_exact_list : append( tdfd_exact_list, [ [0, fd_old] ] )$

for td_old : 0 thru td_final step Dtd do (
td_new : td_old + Dtd,
fd_new : fd_old + (-fd_old) * Dtd,
tdfd_list : append( tdfd_list, [ [td_new, fd_new] ] ),
fd_old : fd_new,
tdfd_exact_list : append( tdfd_exact_list, [ [td_new, exp(-td_new)] ] )

)$

wxplot2d( [ [ discrete, tdfd_list ], [ discrete, tdfd_exact_list ] ],
[color, black, black], [style, [points, 1, 3], lines],
[x, 0, td_final], [y, -0.1, 1.1], [legend, "numerical", "exact"],
[xlabel, "t_dimensionless"], [ylabel, "f_dimensionless"] )$

The outcome:

Figure 110.1 The exact solution and the approximate numerical result.

6.5 Finite difference method – example 2

Next, a set of two coupled first-order differential equations is solved with the same
method.

/* Example 2 for the finite difference method: system of equations:
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solving d f / d t = -k*g(t) , d g / d t = k*f(t)
with initial conditions f(0) = f0 > 0, g(0) = 0 .
With units fu = f0, tu = 1/k , the dimensionless quantities are
fd = f/fu, gd = g/fu, td = t/tu , with which the problem becomes
d fd / d td = -gd(td), d gd / d td = fd(td), fd(0) = 1, gd(0) = 0 . */

/* Now, instead of _new, _old, and lists, we use arrays
(faster but uses more memory).
Observe that now we only plot every 5th point. */

td : 0.0$ td_final : 8.5$ Dtd : 0.02$ K : 5$
J : ceiling(td_final/Dtd)$
array(fda, flonum, J)$ array(gda, flonum, J)$
fda[0] : 1.0$ tdfd_list : makelist( [ td, fda[0] ] )$
gda[0] : 0.0$ tdgd_list : makelist( [ td, gda[0] ] )$
fdgd_list : makelist( [ fda[0], gda[0] ] )$

for j : 0 thru J-1 do (
td : td + Dtd,
fda[j+1] : fda[j] - gda[j] * Dtd,
gda[j+1] : gda[j] + fda[j] * Dtd,
if j = K*floor(j/K) then (

tdfd_list : append( tdfd_list, [ [ td, fda[j+1] ] ] ),
tdgd_list : append( tdgd_list, [ [ td, gda[j+1] ] ] ),
fdgd_list : append( fdgd_list, [ [ fda[j+1], gda[j+1] ] ] )

)
)$
wxplot2d( [ [ discrete, tdfd_list ], [ discrete, tdgd_list ] ],

[color, cbfblue, cbfgreen], [x, 0, td_final], [y, -1.3, 1.3],
[legend, "fd", "gd"], [xlabel, "td"], [ylabel, "fd, gd"] )$

wxplot2d( [ discrete, fdgd_list ], [color, cbfred], [yx_ratio, 1],
[x, -1.3, 1.3], [y, -1.3, 1.3], [xlabel, "fd"], [ylabel, "gd"] )$

The outcomes are:

Figure 111.1 Left: f̌
(
ť
)

(bluish line) and ǧ
(
ť
)

(greenish line). Right: points
(
f̌ , ǧ

)
parametrized by ť.
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In the exact solution, the bluish line is a perfect cosine function, the greenish one is
a sine, and the reddish curve is a perfect circle. (Think why.)

6.6 How to write midterms and software/other documenta-
tions

Add comments to calculational steps and program code parts/lines generously. The
train of thought should be found reproducible by your fellow students, your teachers,
as well as yourself of five years later. You will be grateful to your five-years-earlier
self.
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6.7 Problems

Problem 1 During a time interval 0 = t1 ≤ t ≤ t2 = 100 s, pressure of a
monoatomic ideal gas changes according to p(t) = p1 + at with p1 = 3 bar,
a = −0.02 bar

s , while volume changes as V (t) = V1 + bt with V1 = 1 dm3,

b = 0.01 dm3

s . Initially (i.e., at t1), temperature is T1 = 300K .
A) Determine the minimal temperature value Tmin, as well as the maximal one Tmax,
during this time interval.
B) Calculate the work (Wt1→t2) done on the gas during this time interval, in
two ways: once when the process is parametrized by volume, and once when it’s
parametrized by time. Are the two results the same?
C) Calculate the required heat (Qt1→t2) absorbed by the gas during this time inter-
val.
D) Determine, in two different ways, the time derivative of internal energy as the
function of time,

(
Ė(t)

)
.

E) In which cell of Table 10.1 did we stay during this problem?

Problem 2 Does the vector field

v (x, y, z) =

 4xy
2x2 + 3z2

6yz

 , (113.1)

understood in Cartesian coordinates in a three-dimensional Euclidean vector space,
have a potential? If yes, determine it (up to the unavoidable uncertainty of an
additive constant).

Problem 3 We have a fixed amount of ideal gas (with constant cv = f
2R).

A) Which are its so-called polytropic processes, i.e., those processes along which the
specific heat capacity, cprocess =

đq|process
dT |process

, is constant: what relationship should p

and v satisfy?
B) Calculate the corresponding polytropic specific heat capacity cprocess.
C) Determine the work done on the gas along a polytropic process between a state
1 with p1, V1 and a state 2 with p2, V2.
D) Is it possible to connect any two – randomly chosen – states (p1, v1) and (p2, v2)
in the state space of the material by some appropriate polytropic process? If yes, by
which one?

Problem 4 According to an empirical formula for a certain heat convection sit-
uation, the heat transfer coefficient αconv, in W

m2K , can be expressed in terms
of a temperature difference ∆T , in K, and a characteristic length L, in m, as
αconv = 1.42

(
∆T
L

) 1
4 .

A) “Cure” this formula dimensionally, i.e., re-express it in a form that is valid without
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requirements about the units of αconv, ∆T , and L.
B) Do the same when the power 1

4 is replaced by 0.24. (Powers like this are, fre-
quently, results of a fitting on measurement data rather than outcomes of some
analytical calculation.)
[Another advantage of such a rewritten form is that, should you change units from
SI to units like cal, ◦F, BTU, ft etc.130, you have to do it only at the coefficient.]
Hint: What the text says is that the formula is to be understood as

αconv
/(

W
m2K

)
= 1.42

(
∆T/K
L/m

) 1
4

. Rearrange this into the user-friendlier form

αconv = 1.42 somecombinationofunits ·
(
∆T
L

) 1
4 .

Problem 5 Similarly to the proof in Sect. 3.7, show that e(s, v) is convex from
above.

Problem 6 Similarly to calculation (68.3), determine the conclusion analogous to
(68.4) when (72.3) is replaced with (72.5).

Problem 7 In view of (31.4) and (16.2), show that total entropy of an ideal gas
body plus an environment, (68.5), equals

f
2
mR

(
ln

T

Ta
− T

Ta

)
+mR

(
ln

v

va
− v

va

)
+ const. (114.1)

(you are allowed to choose T0 = Ta and v0 = va where va = RTa/pa
131). Check

both analytically and numerically (e.g., plot2d and plot3d in Maxima of St/(mR) in
the dimensionless temperature and dimensionless specific volume variables Ť = T

Ta
,

v̌ = v
va

, with any reasonable f ) that this total entropy is concave from above in both
variables T and v, and has a strict global maximum at (Ta, va).

Problem 8 Convince yourself that the temperature value below which pressure
can be negative for a simple material is determined by the solution of the set of
equations

p(T, v) = 0 ,
∂p

∂v

∣∣∣∣
T

= 0 . (114.2)

Show that, for the Van der Waals model, this temperature value Tp=0 is 1
4

a
bR . 132

130Wikipedia, 2019-02-19: “A BTU was originally defined as the amount of heat required to raise
the temperature of 1 avoirdupois pound of liquid water by 1 degree Fahrenheit at a constant pressure
of one atmosphere. There are several different definitions of the BTU that are now known to differ
slightly.” The same source, on ft: “It varied in length from country to country, from city to city,
and sometimes from trade to trade. Its length was usually between 250 mm and 335 mm”, and on
cal: “Various definitions exist but fall into two broad categories.”
131Well, va is not the specific volume of the environment, naturally, but merely such a combination

of constants that is convenient here.
132Surprisingly, this value is not much lower than Tc = 8

27
a
bR

(see Sect. 3.10): Tp=0/Tc = 1
4

/
8
27

=
27/32 ≈ 0.84 .
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Hint: Express T from one of the equations, substitute it into the other equation,
solve for v, and substitute that v into T .

Problem 9 Show statements (56.3).

Problem 10 Verify statement (56.4).

Problem 11 Demonstrate that (72.5) restores energy conservation, and calculate
the corresponding entropy production rate density, analogously to (68.3).

Problem 12 Check that result (77.7) is dimensionless, as it should be.

Problem 13 Show that, if we want a dimensionless version of the problem con-
sidered in Sect. 4.5 – e.g., for a numerical solution – then we can use the constants
Ta, pa, m·R , and χP to make the problem dimensionless. What length, time, mass,
and temperature units can be derived from these constants?

Problem 14 Derive (92.2) and (92.3).
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