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PREFACE

To facilitate the application of physical theories in practice, researchers today
must develop new methods not only for the systematization and interpretation of
increasing experimental data but also for the simplification, unification and com-
bination of already existing and well-functioning theories. A step toward this goal
is served by the present text which attempts to compose a general theory of classi-
cal field incorporating continuum mechanics, electrodynamics and thermodynam-
ics. Although looking mainly at the mechanical motion of media, the methods
described by this text point far beyond the rheological applications (as indicated
in the title) to an exact theory of non-equilibrium thermodynamics, thus making
possible a unified description of mechanical, electromagnetic and thermic phenom-
ena together with the interrelations between them. As a result, this theory offers
a strong organizational force and an extraordinarily wide range of applications.
Knowledge of non-equilibrium thermodynamics is indispensable for the physicists
dealing with transport processes, physical chemistry, plasma physics or energetics,
for the chemical engineer and even for biophysicist and biologist. To the aforemen-
tioned enumeration can be added by electrical, mechanical and civil engineers as
well as architects engaged in dielectrics, structural materials, colloid agents or even
in liquid crystals. This wide range of application of irreversible thermodynamics
arises from the fact that in nature any macroscopic process is irreversible.

This book deals both with the complicated and far-reaching forms of motion of
the materials continuously filling up the universe and with establishing principles in
joining classical field theoretical methods with irreversible thermodynamics, using
macroscopic methods but not forgetting the corpuscular structure of the agents.
By elaborating on these methods in detail, the proper means for the quantitative
description of irreversible phenomena — means formerly lacking from the viewpoint
of generality, mathematical exactness and direct applicability — are now evident.

The results outlined in this book speak for themselves. The general feature of
the correlations presented and — at the same time — their simplicity will surprise
even the reader familiar with literature of the topics. To those not acquainted
with the subject matter of deformation and flow or with the relevant optical and
electromagnetic phenomena, it serves as an introduction.

The harmonic coordination of the succinctly expressed vast knowledge assures
— beyond the aesthetic experience — its comprehension, understanding and im-
mediate applicability.

Successful striving for mathematical simplicity is an advantage of the book. The
author avoided complicated methods too often seen in the literature (for example,
he did not apply the Ricci calculus that — considering the Euclidean structure
of surrounding classical space — has an advantage only for numerical solutions of
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special problems). The importance of the topics presented and the precision and
applicability of the new thermodynamic theory (the so called dynamic variables
introduced by the author) will usher in a new epoch in the literature of the topics.

István Gyarmati



CONTENTS

INTRODUCTION. 1

I. KINEMATICS. 3
1.1. Motion of continua. 3
1.2. Strain. 5
1.3. Rate of deformation. 9

II. DYNAMICS. 13
2.1. Mass of continua. 13
2.2. The momentum of continuum. 14
2.3. Stress. 15
2.4. Body forces. 16
2.5. Forces of gravity and inertia. 16
2.6. Electromagnetic forces. 18
2.7. Moment of momentum. 20
2.8. Electromagnetic couple density. 22

III. DEFORMATION AND STRESS. 23
3.1. Classical body models. 23

3.1.1. Rigid body. 24
3.1.2. Hooke-body. 24
3.1.3. Pascal-body. 25
3.1.4. Newton-body. 25

3.2. Mechanical models of rheology. 26
3.2.1. Maxwell-body. 26
3.2.2. Kelvin-body (Voigt-body). 28
3.2.3. The rheological model of plastic flow. 29
3.2.4. The spatial loading of the ideally plastic body. 32
3.2.5. Further non-linearities. 33

3.3. On the methods of modern continuum mechanics. 35
3.4. The theory of the simple shear flow. 39
3.5. Viscometric Flows. 41
3.6. Closing remarks. 41

IV. NON-EQUILIBRIUM THERMODYNAMICS. 43
4.1. On the first and second law of thermodynamics. 43

4.1.1. The state variables. 44
4.2. Balance equations. 45

4.2.1. The general form of balance equations. 45
4.2.2. The balance of mass. 47



iv CONTENTS

4.2.3. The balance of momentum and moment of momen-
tum. 47

4.2.4. The balance of kinetic energy. 47
4.2.5. The balance of the internal energy. 48

4.3. Entropy balance. 51
4.4. The linear laws. 53
4.5. Reciprocal relations. 57
4.6. Gyarmati’s variational principle of dissipative processes. 59

4.6.1. The local forms of Gyarmati’s principle. 60
4.6.2. The governing principle of dissipative processes. 64
4.6.3. The derivation of the von Mises’ equations of plas-

ticity. 65
4.6.4. The generalized reciprocal relations and the general-

ization of Gyarmati’s principle for non-linear cases. 66
4.7. The wave approach of thermodynamics. 70
4.8. Transport of dynamic degrees of freedom. 74
4.9. Correlation between rational, entropy-free, extended and

Onsager’s thermodynamics. 76

V. THERMODYNAMICS OF DEFORMATION.
SYSTEMS CLOSE TO EQUILIBRIUM. 81

5.1. Media in local equilibrium. 81
5.1.1. Equilibrium of solids. 83
5.1.2. Motion of solids. 85
5.1.3. Motion of fluids. 85

5.2. Material symmetry. 88
5.3. Anisotropy by deformation. 89
5.4. Heat conduction and deformation. 91

5.4.1. Thermoelasticity. 91
5.4.2. Propagation of sound waves in media in local equi-

librium. 92

VI. THERMODYNAMICS OF DEFORMATION.
SYSTEMS FAR FROM EQUILIBRIUM. 95

6.1. Bodies with a single dynamic variable. 96
6.1.1. Motion of incompressible fluids. 97
6.1.2. Shear flow of liquids. 101
6.1.3. Complex-number treatment for shear flow. 103
6.1.4. Transient stress. 104
6.1.5. Plastic behavior. Creep. 106
6.1.6. Extension of complex representation to plane mo-

tions. 114
6.1.7. Elementary theory of streaming birefringence. 115
6.1.8. Deviations from linearity. 117
6.1.9. Volume viscosity. 120
6.1.10. Motion of solid bodies. 121
6.1.11. Some remarks on representation. 121

6.2. Motion of a body with several dynamic variables. 125



CONTENTS v

6.2.1. Small-amplitude oscillations. 125
6.2.2. Shear flow of liquids. 126
6.2.3. Several types of dynamic variables. 130
6.2.4. Analogy with electric two-poles. 131
6.2.5. Streaming birefringence. 133
6.2.6. Matrix representation of constitutive equations. 134
6.2.7. Plastic behavior. 135

6.3. Some limit cases. 141

VII. ELECTRIC POLARIZATION
IN FLOWING MEDIA. 143

7.1. Thermodynamics of electric polarization. 143
7.2. Flow of dielectrics in electromagnetic field. 146
7.3. Body with several dynamic variables. 151
7.4. Flow and polarization of conductive media. 153
7.5. Thermodynamic theory of streaming birefringence. 154

VIII. APPLICATIONS OF THE THEORY. 157
8.1. Viscosity of globular colloids. 157
8.2. Calculation of the viscosity of globular colloids based on

structural considerations. 158
8.3. Effect of interfacial tension: emulsions and foams. 173
8.4. Thermal motion of rigid colloidal particles. 177
8.5. Viscosity of polymers. 182

8.5.1. Equilibrium configurations of chain molecules. 182
8.5.2. Motion of chain molecules. 186
8.5.3. Chemical relaxations in loose networks. 193

8.6. Motion of liquid crystals. 195
8.6.1. Entropy of nematic liquid crystals. 197
8.6.2. Entropy balance. 199
8.6.3. Conditions of equilibrium. 201
8.6.4. Motion of liquid crystals. 204
8.6.5. An example. 210
8.6.6. Shear flow of nematic liquid crystals. 212

APPENDIX. (Mathematical notations and definitions.) 215
A 1. The Basic Operations. 215
A 2. Symmetric and Antisymmetric Tensors. 216
A 3. Tensor products. 216
A 4. Eigenvalues and Invariants. 217
A 5. Orthogonal Tensors. 218
A 6. Isotropic Tensors. 219
A 7. Derivatives. 220
A 8. Integral Theorems. 220

REFERENCES. 221





INTRODUCTION

Thermodynamics as a field theory has the history of a few decades only. Its
methods — we dare say — have been elaborated but are not final at all. They are
changing and transforming even at present. At the same time the rapid development
in technology gives rise the demand for a unified and general theory of classical field
incorporating continuum mechanics, electrodynamics, and thermodynamics. The
need of practical applications has led to the development of several methods and
ideas differing from each other according to the different branches of applications,
nevertheless, overlapping and similarity are not rare. The unification is rather hard,
partly for the different intentions, partly for the enormous amount of knowledge
involved.

I intend to contribute to the unification following Gyarmati [70] who made the
first consistent steps in his book in 1970. The starting point of my work is the field
theoretical view of thermodynamics — founded by Onsager in 1931 [124, 125] — of
irreversible processes. I have fitted the aspects of non-equilibrium thermodynamics
to classical and modern concepts and methods of mechanics and electrodynamics.

In this work I made, of course, compromise as well. For example, I avoid the
difficulties due to the complexity of mathematical apparatus of general relativity
(and not to be hindered in my work by the undeveloped theory of relativistic ther-
modynamics), I limited my considerations to slowly moving media and accordingly
used the correlations of electrodynamics in approximate form.

As my work may be only the first step in the elaborating of this theory, in this
book I give only those consequences I deemed as most important. First of all, the
linear constitutive equations of Onsager’s thermodynamics are applied (although
from time to time the linear and non-linear alternatives come in question as well,
but only to show the possibilities for continuing this work). The majority of meth-
ods and concepts applied in my work belong to non-equilibrium thermodynamics:
however, I relied considerably also on the methods of continuum mechanics, rhe-
ology and electrodynamics. For example, I borrowed the often applied complex
formalism from the linear theory of electric networks.

The composition of this book reflects the synthesizing character of my work.
Chapters 1 and 2 include the principles of continuum mechanics to the extent
needed to expound a unified theory by giving the definitions taken from continuum
mechanics together with their correlations. The apparatus required to consider the
effects of gravitational and electromagnetic fields is so defined that it can be applied
even in the case of micropolar media.

Chapter 3 outlines the well-known methods relating stress and strain. This Chap-
ter aims partly at summarizing the experimental results and partly at indicating
the ideas taken from rheology and continuum mechanics respectively.

Chapter 4 includes the setting forth of irreversible thermodynamics, making the
reader acquainted with balance equations and “linear” laws of irreversible ther-
modynamics as well as with the Onsager-Casimir reciprocal relations, and, further,
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with Gyarmati’s variational principle. The new theory and applications of dynamic
variables is described in this chapter. Chapter sums up some results of irreversible
thermodynamics partly reached by me, partly born while writing this book, so their
direct application — at least as to rheology — could hardly come on as yet.

Chapter 5 is based on the hypothesis of local equilibrium. It also incorporates
theories of classical elasticity, thermoelasticity and Newtonian fluids into the frame-
work of thermodynamics.

Chapter 6 studies media far from equilibrium, rejecting the hypothesis of local
equilibrium. New scientific results follow the solution of the linear constitutive
equations of Onsager’s thermodynamics, thus enabling models of rheology to begin
now from a single uniform basic principle. The viscoelastic and plastic response,
Ostwald’s curve characterizing the generalized Newtonian fluids, the effect of creep,
the elastic features preceding plastic flow, the basic interrelations of reooptics, etc.
are interpreted with phenomenological methods, quantitatively. The consistent
character of the method is shown by the self-evident theoretical proof of the em-
pirical Cox-Mertz rule [28]. It is confirmed that its limit of validity coincides with
that of strictly linear rules. This book over-rides the limits of the linear theory, but
only in the simplest case to show the direction for the future.

Chapter 7 deals with electromagnetic phenomena including the irreversible ther-
modynamic theory of streaming birefringence and photoelasticity. Here the raison
d’être of quasi-linear theory is verified.

Chapter 8 outlines some practical applications of the aforesaid theory. Several
colloids, polymers as well as the liquid crystals are described here. In case of colloids
— after thermodynamic considerations — the equivalent theory based on micro-
scopic structure is mentioned. The two methods do not exclude each other; in fact,
the microscopic considerations complete well those of thermodynamics giving the
graphic meaning of phenomenological conductive coefficients. Here I draw the at-
tention of the reader to the thermodynamic method which gives the mathematical
form of the functions studied more briefly and elegantly than the mathematical
methods based on partial differential equations that are essential for other approx-
imations; moreover it is free from the uncertainties due to not perfect reliability in
each case separately of hypothesis regarding the microscopic structure of a partic-
ular material.

The Appendix sums up the applied mathematical apparatus, but only to facili-
tate the interpretation of used notations.

It is a pleasure to thank Prof. I. Gyarmati for his introducing me — at a
high international level — to the basis of irreversible thermodynamics at a very
high level. During my three-decade research work, he always inspired me to reach
considerable results, and placed his wide-range knowledge at my disposal.



CHAPTER I

KINEMATICS

1.1. Motion of continua.

The motion of a body is kinematically known if we know the position of any
point at any time. Many methods are known to label the points of the body. One
possibility is to use the position occupied at a given time t0 to denote the moving
point. To give the positions, some kind of frame of reference is applied. The usual
mathematical means are a system of co-ordinates fixed to a frame of reference. The
mode of selecting the reference and coordinate system may be optional in principle:
however, the proper selection can simplify the calculus to be done. We can use
Cartesian coordinates in Euclidean space; the vectors of the Euclidean space are
suitable for indicating positions.

Select a moving body and choose its point P0. Denote the rectangular coordi-
nates of the point in time t0 with x1, x2, x3 in the coordinate system defined by
orthonormal base vectors (unit vectors) j1, j2, j3. Then call the vector

X = X1j1 +X2j2 +X3j3 (1.1)

the position vector of point P0 in time t0. Denote the coordinates of points P0 in
time t with x1, x2, x3. The vector

x = x1j1 + x2j2 + x3j3 (1.2)

is the position vector of point P0. It is changing in time. We can regard the motion
of point P0 as kinematically known if we know the function

x = x(t). (1.3)

If we choose another point P instead of point P0 then the vector X will be quite
different and even the function x = x(t) will be replaced. Therefore, we can say
that the position vector x depends not only on time but on the point whose motion
it describes. As we apply the X vector to specify the points of the body, we can
mathematically give the motion by the so-called motion function

x = x(X, t). (1.4)

We can call the numbers x1, x2, x3 as Eulerian or space coordinates and the numbers
X1, X2, X3 as material or Lagrange coordinates [27, 42, 75, 154]. The mapping (1.4)
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is assumed to be single valued and to have continuous partial derivatives except
possibly at some singular points, curves and surfaces. Furthermore, its jacobian

j =
∂(x1, x2, x3)

∂(X1, X2, X3)
=

∣

∣

∣

∣

∣

∣

∣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

∣

∣

∣

∣

∣

∣

∣

(1.5)

is positive i.e.

0 < j < ∞. (1.6)

This inequality physically means the indestructibility of the material. It shows
that during motion the body of finite volume was always of finite volume and will
remain under any circumstances. To understand this, consider an infinitesimal
parallelepiped with edges dX1, dX2, dX3 around the point X1, X2, X3. During
the motion, the edges of the parallelepiped dX1j1, dX2j2, dX3j3 deform to edges
∂x
∂X1

dX1,
∂x
∂X2

dX2,
∂x
∂X3

dX3, while the parallelepiped remains parallelepiped, the
volume of which can be given by

dV =

(

∂x

∂X1

dX1 ×

∂x

∂X2

dX2

)

∂x

∂X3

dX3 (1.7)

In coordinates, it makes

dV =

∣

∣

∣

∣

∣

∣

∣
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∂x1
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∣

∣

∣

∣

∣

∣

dX1 dX2 dX3 = j dV0 (1.8)

where dV0 is the original volume in time t0. It is very important beyond the
fundamental physical meaning that the inequality (1.6) assures the invertability of
the deformation function, i.e. the inverse function

X = X(x, t) (1.9)

exists.
In many important cases, making distinction between certain points is only of

theoretical importance: therefore the use of spatial or Eulerian description is com-
mon, especially when discussing liquids. This means that we regard the motion as
known if we know the velocity as a function of time and place:

v = v(x, t). (1.10)

The connection between these two kinds of description can be summed up as follows:
The time derivative of the motion gives the velocity in function of time and starting
point:

v =
∂x(X, t)

∂t
. (1.11)
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However, the starting point can be given with the help of (1.9) as a function of the
instantaneous position and time. So considering (1.9), we turn (1.11) into (1.10) as

v =
∂x[X(x, t), t]

∂t
= v(x, t). (1.12)

Doing the reverse — from (1.12) to (1.04) — is more complicated. Let us regard
the function (1.10) as a vectorial differential equation for the position of a selected
point P0

dx

dt
= v(x, t). (1.13)

In the general solution, three arbitrary numbers appear, the value of which are
determined by the initial condition

x = X, if t = t0. (1.14)

In this way, we can get the motion function

x = x(X, t).

From the aforesaid it can be seen that from a physical point of view the two de-
scriptions are equivalent: we can change over from one to the other at any time.

1.2. Strain.

The motion of a body, as we mentioned before, is described in general with a
function (1.4). As not any motion of the body results in deformation, it is more
precise to apply the term “motion” instead of the frequently used term “deforma-
tion”.

A characteristic of motions without strain is that during motion the distance
between any pair of points remains unchanged. These motions are called rigid
body motions.

Let us examine which of the functions (1.4) indicate motion without strain.
Consider two different, but otherwise arbitrary points of the medium P1 and P2.
The distance between them does not change, so

(x1 − x2)
2 = (X1 −X2)

2 (1.15)

that can be written as

3
∑

i=1

(x1i − x2i)
2 =

3
∑

J=1

(X1J −X2J )
2 (1.16)

in rectangular coordinates. Making use of the inverse function (1.9), (1.16) becomes:

3
∑

i=1

(x1i − x2i)
2 =

3
∑

J=1

[X1J (x1, t)−X2J(x2, t)]
2. (1.17)
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As the point P1 is arbitrary, this equation holds for any x1; and also the partial
time derivatives with respect to x1i of the right and left sides are equal:

x1i − x2i =

3
∑

J=1

(X1J −X2J)
∂X1J

∂x1i

(1.18)

Introducing the form

QiJ =
∂X1J

∂x1i

(1.19)

and rearranging (1.18), we can write

x2i = x1i +
3

∑

J=1

QiJ (X2J −X1J ) (1.20)

whose vector form is
x2 = x1 +Q(X2 −X1). (1.21)

The Qij quantities (i.e. the tensor Q) does not depend on how the point P2 has
been chosen: namely, its components can be calculated by (1.19) only from the
coordinates belonging to point P1. Exchanging P1 and P2 we obtain

x2 = x1 +Q′(X2 −X1) (1.22)

being fully similar to (1.21) where Q does not depend on the selection of point P1.
The equivalence of (1.21) and (1.22) results in Q = Q′; i.e., Q is identical for any
P1 and P2.

On the basis of (1.15) and (1.21) the tensor Q leaves the absolute value of any
vector unchanged. Based on this and using the equations

(QA)2 = A2; (QB)2 = B2; [Q(A+B)]2 = (A+B)2,

it is seen that the tensor Q leaves the scalar product of any two vectors unchanged:

(QA,QB) = (A,B), (1.23)

so Q is orthogonal; i.e., QT = Q−1 and, therefore, QQT = δ. On the other hand,
it can be understood that during any motion given by the function

x = a(t) +Q(t)X (1.24)

(Q orthogonal tensor), the distance of any two points is constant. The class of
functions which do not result in strain are thus evident. The a(t) function shows
the translation of the body, while the tensor Q(t), the rotation. The Q(t) may
not mean reflection as the determinant of reflections, is −1; and the determinant
of Q(t) is non-negative in accordance with (1.6).

The motions which can be written in a form similar to (1.24)

x = a(t) + xX (1.25)
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(where x is not orthogonal) are called homogeneous deformations.
The tensor x is called the deformation gradient. The deformation gradient de-

scribes the strain and rotation of an environment of point P0.
To separate the rotation and strain, Cauchy’s polar decomposition theorem is used.
On the basis of this theorem, any non-singular, and invertible second order tensor
x can be factorized in form

x = RD = dR (1.26)

where D and d are symmetric tensors whose proper values are positive, and R is
an orthogonal tensor; i.e. the relations

D = DT , d = dT , RRT = δ (1.27)

hold. The decomposition is unique.
By analyzing the deformation gradient tensor on the ground of polar decompo-

sition, it is seen that R shows the rotation while D and d, respectively, the local
deformation in the sense that in a rotation-free case R, in a strain-free case D

and d equal the unit tensor. Indeed, at a motion without strain, the deformation
gradient is orthogonal; i.e., on the basis of polar decomposition

x = Q = Rδ = δR = R (1.28)

can be written.
To simplify the notation, we use the following conventions:

a) the indices denoted by minuscules refer to x coordinates; those denoted by
majuscules refer to X coordinates.
b) in every case when an index occurs twice in an expression we omit the sign of
summation

∑

and sum up from 1 to 3 for the dummy index (Einstein convention).
c) the indices following the comma mean the partial derivatives with respect to the
relevant variable.

Now study the case where the deformation gradient tensor does not depend on
position, and the orthogonal factor received during polar decomposition corresponds
to the unit tensor.

Then, according to (1.25), we can write the motion as

x = a(t) +D(t)X (1.29)

and after a transformation to principal axis as

x1 = a1 +D1X1,

x2 = a2 +D2X2,

x3 = a3 +D3X3.

(1.30)

where D1, D2 and D3 indicate the eigenvalues of the tensor D. This means that,
apart from translations determined by a1, a2, a3, stretchings parallel to the prop-
ervectors have also appeared. We should image the whole process so that, first, we
realize the three translations in arbitrary sequence and, afterwards, the stretching.
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So, in case of homogeneous deformations when the function (1.4) can be given in
form

x = a(t) +R(t)D(t)X, (1.31)

the instantaneous deformation is defined by the tensor D. The motion to the
present configuration can be decomposed to a succession of deformation, rotation
and translation. The decomposition in equation (1.31) corresponds to this succes-
sion: D defines the deformation, R the rotation and a the translation. Of course,
the order of the steps of the motion is important as can be seen

r = a+RDX = a+ dRX = RD(A+X) =

= dR(A+X) = R(a∗ +DX) = d(A∗ +RX).
(1.32)

Here we have introduced the notations

A = D−1RTa, a∗ = RTa, A∗ = RD−1RTa

as well as having used the identity

d = RDRT

due to polar decomposition. We mention that the tensor D changes during motion,
as do the directions of its propervectors which means we can regard the foregoing as
an instantaneous exposure. The considerations on homogeneous deformation can
be applied for arbitrary motion. For that, only a sufficiently small neighborhood of
a selected position X0 should be regarded.

It is important to mention that the resultant of two sequential deformations
without rotation is generally not a strain without rotation as the product of two
symmetric tensors is generally not symmetric. The situation is quite different if the
deformations are small; i.e., when the tensor D describing the deformations slightly
differs from the unit tensor. In this case it is advisable to introduce the notation

D = δ +E (1.33)

The tensor E should be called the deformation tensor, as it is the zero tensor in
the case of motions without strain. In case of two sequential deformations without
rotation, we get the relation

x = (δ +E1)(δ +E2) ≈ δ + E1 + E2 (1.34)

for the resultant deformation gradient, if we neglect the product E1E2 due to its
smallness. The sum of two symmetric tensors is, however, also symmetric, so we
can regard the resultant deformation as the sum of two strains. The formula (1.34)
can be applied even in cases when the small strains are accompanied by rotations.
In this case the resultant deformation gradient is determined from the equation

x = R2(δ +E2)R1(δ +E1) = R2R1(δ +RT
1
E2R1 +E1) (1.35)
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which shows that the deformation tensors can be added even now; however, due to
the rotations, a common reference-frame should be provided for. The additivity of
small deformations tempts one to believe that any deformation can be composed
of small deformations. Although this misconception is very common in the old
theory of infinitesimal deformations, it is, nevertheless, false as the sum of the
terms neglected from (1.34) is not negligible anymore in case of finite resultant.

Finally we can draw attention to (1.35) where only the deformations are small
and the rotations and displacements are arbitrary.

As outlined above, the motion of neighborhood of point P was decomposed to
translation, rotation and deformation. The deformation is often decomposed to an
isochor and a similarity deformation. It is done as follows: Regard the formula (1.8)
and use Cauchy’s decomposition theorem as well as the multiplication theorem of
determinants. Then

dV = j dV0 = detx dV0 = detR detD dV0. (1.36)

As R describes rotation, the value of its determinant is 1, so

dV = detD dV0 = detd dV0 (1.37)

Define now a factor λv as well as the tensors D0 and d0 as follows:

λv = (detD)
1

3 ; D0 =
1

λv

D; d0 =
1

λv

d, (1.38)

by which the deformation gradient is cast into

x = λvRD0 = λvd0R (1.39)

It results from the definitions (1.38) that

detD0 = detd0 = 1. (1.40)

The factor λv describes similarity transformation; i.e., if d0 = D0 = δ, although the
dimensions of the body change (the factor λ defines just the extent of elongation),
however, the angle of any two line element is unchanged.

The meaning of the tensors D0 and d0 becomes clear if the case of λv = 1 is
analyzed. In this case the volume of the body remains unchanged, so we regard the
formula (1.39) as the product of the required decomposition.

1.3. Rate of deformation.

The separation of deformation and rotation by means of polar decomposition
gives an obvious way of defining the rate of deformation. As any of the tensors d

and D, respectively, show deformation with respect to the reference configuration,
it seems, at first sight, that the material time derivative of any of them is suitable
to characterize the momentary speed of deformation.

This is not true, as d changes even if the strain of the body is constant in time
but the body is rotating. On the other hand, the D tensor changes only if the form
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of the body changes; i.e., Ḋ can be considered as the rate of strain. We have to
take into account that the selection of the reference configuration is not free from
all arbitrariness ( in case of a particular motion, different reference configurations

can be applied as well); therefore, the D tensor and, of course, even Ḋ contains
subjective elements. But in other relations the reference configurations are not
equivalent — think here of elastic bodies — so we cannot refer the role of reference
configuration definitely to subjective elements. This question is not answered to
complete satisfaction in the literature [42, 144, 153, 154].

We can advance in clearing some ambiguity if we change over from the coordi-
nates X1, X2, X3 to spatial coordinates x1, x2, x3 and we analyze the velocity field
in the neighborhood of a point.

To denote the spatial position of a point X near to point X0, we can apply the
linear partial sum of the Taylor-series of the motion function around the point:

x = x0(X0, t) + x(X−X0). (1.41)

The deformation gradient tensor x depends, of course even now, on place and time,
i.e.

x = x(x0, t). (1.42)

By Cauchy’s polar decomposition, we can rewrite (1.41) in

x = x0 +RD(X−X0) = x0 + dR(X−X0), (1.43)

from what, by forming the partial derivatives of (1.11), we get the definition of
velocity distribution around the point X0:

v = v0 + (ṘD +RḊ)(X−X0) = v0 + (ḋR+ dṘ)(X−X0). (1.44)

Using the invertability of the tensors R and D, and applying (1.43), the velocity
gets the following alternative forms:

v = v0 + (ṘD +RḊ)D−1RT (x− x0) =

= v0 + (ḋR+ dṘ)RTd−1(x− x0) =

= v0 + (ṘRT +RḊD−1RT )(x− x0) =

= v0 + (ḋd−1 + dṘRTd−1)(x− x0).

(1.45)

From the latter expressions, the velocity gradient tensor is obtained:

Gradv = ṘRT +RḊD−1RT = ḋd−1 + dṘRTd−1. (1.46)

If the form of the body does not change, after a period of time the tensor D will be
constant and its derivative will be zero. The velocity gradient is reduced to RRT

which is skew-symmetric as the relationship

RRT = δ
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leads to the identity

ṘRT +RṘT = 0, i.e. ṘRT = −(ṘRT )T

We refer to the skew-symmetric ω = ṘRT tensor as the angular velocity tensor,
which we write as

ṘRT = ω = ~ω × δ. (1.47)

Here ~ω is the angular velocity vector, the vector invariant of the skew-symmetric
tensor RRT . The tensor Ḋ may be regarded as the measure for the speed of
deformation; however, this tensor is rather connected to the reference configuration
than to the moving medium. To avoid this fault, we prefer to regard the

RḊRT = d̊ (1.48)

tensor as the rate of strain rather than Ḋ.
A relatively simple rule can be introduced to calculate the tensor d̊. AsD = RTdR,
we have

d̊ = R
d

dt
(RTdR)RT = R(ṘTdR+RT ḋR+RTdṘ)RT .

From that, on the basis of (1.47), and from the orthogonality of R, we receive

d̊ = ḋ+ dω − ωd. (1.49)

It can be seen that d̊ is in very close connection to tensor d as it is the time derivative
in a particular frame, (co-rotating with the medium). This way of forming the time
derivative will be applied for other tensors as this kind of time derivative gives the
change rate of a given tensor with respect to the moving medium.

We repeatedly draw attention to the fact that the defined strain rate contains
generally subjective elements as well, as the selection of the reference configuration
is not free of arbitrariness. The situation is quite different if the deformation is
small; i.e., in the case where the d and D tensors respectively differ slightly from
the unit tensor, or are even, in a moment, just equal to it. The rotation may be,
of course, arbitrary. This is the case, e.g., at fluid motions when in each moment
the present configuration is applied as a reference configuration. Then (1.46) and
(1.49) reduce to

Gradv = ḋ+ ω, d̊ = ḋ (1.50)

From this we can read a really clear result that follows: The tensor describing
the rate of strain with respect to the present configuration is identical with the
symmetric part of the velocity gradient. In other words, the symmetric part of the
velocity gradient can be assumed to be an objective rate of strain. On the basis
of the aforesaid concepts, this tensor is given the name ’stretching tensor’ in the
literature.

Concerning the decomposition (1.39) we can decompose also the strain rate to a
part describing dilatation and a part without dilatation. On the basis of differen-
tiating (1.38), we get

d̊ = λ̇vd0 + λvd̊0. (1.51)
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This is especially simple if we apply the present configuration as a reference con-
figuration when λv = 1 and d0 = δ. Then the first term on the right-hand side of
(1.51) is a spherical tensor; and the second one has a zero trace that we can see on
the basis of identity

detd0 tr(d̊0d
−1

0
) =

d

dt
(detd0) = 0 (1.52)

and (1.40). This means that the zero trace part of the stretching tensor describes a
deformation without volume change while the trace characterizes the rate of volume
change.



CHAPTER II

DYNAMICS

The dynamics of deformable bodies is based on the axioms of Newton’s mechan-
ics. The moving bodies are regarded as continuous media; i.e., in a mechanical sense
as continua. At the same time, we must keep in mind that the physical background
of the continuum in question is the regulated or chaotic set of atomic particles. This
latter circumstance results in the continuum having an intrinsic structure which,
(according to its different grades of complexity), manifests itself through its effect
on macroscopic motion. (In this work there is no intention of analyzing any motion
on microscale). To a quantitative description, the methods of classical space the-
ory are applied, complemented by further hypotheses that are required to describe
the macroscopic manifestations of the molecular background and which take into
consideration the thermodynamic features of the material as well. The physical
quantities are expressed by scalar-, vector- and tensor components that generally
depend on time.

2.1. Mass of continua.

In investigating mechanical motion of extended bodies, we credit each body with
mass that is connected with kinematic characteristics of motion of continua; like-
wise, we have to interpret the mass in such a way that the mass assigned to an
arbitrary part of the medium is identical with the mass interpreted in a pointme-
chanical sense. To do this, we use three ( in non-relativistic theory) fundamental
features of mass:

a) positive scalar,
b) additive and
c) invariant quantity under motion.
It is advisable to examine the additivity from the aforesaid features. Additivity

means that by dividing a body into disjunct parts, the amount of mass of the parts
equals the mass of the body. This means that in ordering the mass of medium to
ranges of space, we receive a totally additive set function of positive value, i.e. in
a mathematical sense, the mass is a measure. In the continuum theory we suppose
that this measure is totally continuous, and so there exists a function — named
density — for which the equality

M =

∫

V

̺ dV (2.1)

holds. Of course, the ̺ density is interpreted as the derivate of the set function M :

̺ =
dM

dV
(2.2)
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The law of conservation of mass can be most easily written for a volume element:

̺ dV = ̺0 dV0, (2.3)

where ̺0 is the density belonging to the reference configuration. Taking equation
(1.8) into account i.e. that the volume dV0 belonging to reference configuration
connects to volume dV as dV = j dV0, we receive the equality

̺ j = ̺0 (2.4)

The better known form of mass conservation is obtained by forming the time de-
rivative of the natural logarithm of both sides. (As space coordinates, we use the
X reference coordinates.)

0 =
∂ ln ̺0
∂t

=
1

j

dj

dt
+

1

̺

d̺

dt
= div v +

1

̺

d̺

dt
, (2.5)

At derivation of (2.5) we applied the identity

d

dτ
detA = detA (A−1)T :

dA

dτ
,

the formula (1.46) regarding the derivatives of determinants as well as that j is the
determinant of the deformation gradient.

By simple modification of (2.5) we get the well-known form of continuity:

d̺

dt
+ ̺div v = 0. (2.6)

We note that the partial time derivative of a function depending on the variables
(X1, X2, X3, t) is identical with a material time derivative.

2.2. The momentum of continuum.

The respective parts of a moving medium are continuously in interaction with
their neighborhood. The interaction determines the further motion and the motion
determines the interaction. The changes of mechanical motion are determined by
the forces acting upon the medium. Newton’s second law gives the connection
between the forces and acceleration.

F = ṗ (2.7)

where F is the resultant force acting upon the body, and p the momentum of the
body. If all parts of the body move with the same velocity, the momentum is in
simple connection with the velocity:

p = mv. (2.8)
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If the velocity field is, however, not homogeneous, then the relation (2.8) can be
applied only to infinitesimal (elemental) medium pieces and

p =

∫

V

v dm =

∫

V

̺v dV (2.9)

can be written. So the equation (2.7) can be expressed in form

F =
d

dt

∫

V

̺v dV =
d

dt

∫

V0

̺0v dV0 =

∫

V0

̺0
dv

dt
dV0 =

∫

V0

̺
dv

dt
dV (2.10)

Here the law of mass conservation (2.3) was taken into consideration as well.
To examine the forces in full detail, let us regard an arbitrary part of the medium,

which is in interaction with other parts of the medium and with the remote sur-
roundings as well. Its close neighborhood exerts force along the surface on the
selected part of the medium while the interaction with the remote environment is
replaced by a force field acting inside the selected body. Therefore we decompose
the forces acting in a continuum into surface and volumetric forces. The volumetric
forces (or body forces, long-distance forces) are described by a totally continuous
set function. So there exists an f(x, t) function named specific force by which the
volumetric force is written in

Fv =

∫

V

f̺ dV (2.11)

The f specific force is composed of gravity and electromagnetic forces.

2.3. Stress.

We suppose that the surface forces act along surfaces inside the continuum and
describe the interaction between the parts of medium on the two sides of the surface.
The force acting on a surface is expressed as

FA =

∫

A

t(x, t) dA (2.12)

Newton’s second law for a continuum reads
∫

V

̺
dv

dt
dV =

∫

V

̺ fdV +

∮

t dA. (2.13)

Transforming the surface integral by Gauss’ theorem we obtain
∫

V

̺
dv

dt
dV =

∫

V

(̺ f +Div t) dV (2.14)

Because this equality is valid for any region the relation

̺
dv

dt
= Div t+ ̺ f (2.15)

also holds. This equation is the local form of Newton’s second law for continua.
The (2.15) equation — referred to as Cauchy’s equation of motion — is the balance
equation for momentum.
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2.4. Body forces.

The present book is devoted to a detailed study of surface forces. The question of
what and how the stress tensor depends on leads us far, while the formal description
of long-distance forces can be given quite simply. Therefore let us first draw our
attention to the long-distance forces.

The reference of force density defined in (2.11) to mass unit is justified by the
circumstance that gravity is proportional to the mass. Under conditions on Earth
it is very frequent that besides gravity no other notable long-distance force occurs
so we can regard the specific force f as being equal to the gravitational acceleration
g. If Cauchy’s equation of motion is extended to rotating reference frames as well,
we have to widen the interpretation of gravity forces.

2.5. Forces of gravity and inertia.

The wider interpretation of gravity means that we regard even the forces of
inertia in accelerating reference frames as gravity forces in full accordance with the
equivalence theorem of general relativity, although we use the classical methods of
quantitative study.

Assume two reference frames with position vectors x and x∗. The two reference
frames should move with respect to one another. Then the transformation

x∗ = Q(t)[x− a(t)] (2.16)

holds, where a(t) is the position vector of the origin of the reference system x∗ in
system x, and Q(t) an orthogonal tensor describing the relative rotation. There
exists also the inverse of this transformation:

x = a(t) +QT (t)x∗. (2.17)

Let x and x∗ be the position vector of any moving material point and let us suppose
the validity of (2.15) in the system x . By double differentiating of (2.17) :

v = ẋ = ȧ+QT ẋ∗ + Q̇Tx∗,

dv

dt
= ä+QT ẍ∗ + 2Q̇T ẋ∗ + Q̈Tx∗,

and by substituting the latter expression into (2.15) we obtain the form of Cauchy’s
equation of motion valid in x:

̺ä+ ̺QT dv∗

dt
+ 2̺Q̇Tv∗ + ̺Q̈Tx∗ = Div t+ ̺ f (2.18)

where the denotation ẋ∗ = v∗ is introduced. If both sides are multiplied from left
by Q and reduced, the equation will have the following form:

̺
dv∗

dt
= Q(Div t) + ̺Qf − ̺Qä− 2̺QQ̇Tv∗

− ̺QQ̈Tx∗. (2.19)
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If we introduce the notations

t∗ = QtQT

and (2.20)

f∗ = Qf −Qä− 2QQ̇v∗

−QQ̈Tx∗

we establish the equation

̺
dv∗

dt
= Div t∗ + ̺ f∗ (2.21)

analogous to (2.15). Here we used the identity

Q(Div t) = Div(QtQT )

that has the form

Qis

∂tsk

∂xk

= Qis

∂tsk

∂x∗

j

Qjk =
∂

∂x∗

j

(QisQjktsk)

in rectangular components.
It can be seen from (2.20) that the tensor t describing the surface forces trans-

forms into t∗ while the transformed body force is accompanied by additive terms
due to relative motion of the reference frames. If the reference frame x is an inertia
frame, then these additive terms are just the forces of inertia. This is easy to see if
we rewrite them in the more usual form with the ~ω∗ angular velocity vector defined
by

~ω∗

× δ = QQ̇T (2.22)

So the f∗ specific force of inertia defined in (2.20) will have the form

f∗ = Qf −Qä− 2~ω∗

× v∗

− ~ω∗

× (~ω∗

× x∗)− ~̇ω
∗

× x∗ (2.23)

where Qä is the specific force of inertia belonging to the translation, −2~ω∗
× v∗

the Coriolis force, −~ω∗
× (~ω∗

×x∗) the centrifugal force and −~̇ω
∗

×x∗ Euler’s force
per unit mass.

Of course, there is no need to suppose that one of the reference frames is an
inertia system. In each case, however, we regard (2.20) as transformation formulae.
In this case, the (2.15) form of Cauchy’s equation of motion is independent of the
selection of the frame.

It is easy to see that the peculiarity of the inertia forces, namely, the additional
terms, do not depend on real interactions but only on the selection of frame. De-
compose the body force into two parts:

f = f0 + f1, (2.24)

where f0 be the resultant of the inertia forces and f1 the force describing real
interactions. In this decomposition we can write the second half of (2.20) in form

f∗
0
+ f∗

1
= Q(f0 + f1)−Qä− 2QQ̇Tv∗

−QQ̈Tx∗ (2.25)

If no real body force occur, then f1 and f∗
1
are zero, i.e. (2.25) formally reduces to

(2.20). Accepting this, as transformation between f0 and f∗
0
, the transformation

f∗
1
= Qf1 (2.26)

arises for f1 and f∗
1
. This means that the forces describing real interactions trans-

form due to the change of frame, i.e. the real forces are objective.
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2.6. Electromagnetic forces.

The Newtonian attraction describes gravitational interactions with exactness far
beyond the requirements of practice; in practical applications, it is considered only
in the action of the largest masses in the environment. In most cases it is quite
a simple task; for that very reason, we do not deal with the forces of gravity any
more.

It is worth, however, paying greater attention to the electromagnetic effects
partly because of the great practical importance of electromagnetism, and partly
because the usual text books deal too little with the general form of ponderomotive
force and the results are often ambiguous, [62, 89, 92, 102, 134].

To describe the ponderomotive force we have to start from the first group of
Maxwell’s equations:

rotE+
∂B

∂t
= 0, divB = 0,

rotH = j+ ̺ev +
∂D

∂t
, divD = ̺e.

(2.27)

We apply the usual notation: E is the electric field strength; H, the magnetic
field strength; D, the electric displacement; B, the flux density; j, the conductive
electric current density; and ̺e, the electric charge density. This form of Maxwell’s
equations takes into account the characteristics of an electromagnetic field and the
effects of the coexisting medium. The division of electromagnetic phenomena to
characteristics of field and to effects of medium is not free from all arbitrariness;
hereinafter, only one of the possible versions [62] is outlined:

We regard the electric field strength E and the flux density B as characteristics
of field. The magnetic field strength H and the electric displacement D contain
already information on polarization of the medium as well; therefore, these latter
are eliminated by introducing the magnetization M and the electric polarization
P. M and P are defined by equations

D = ε0E+P (2.28)

and

B = µ0(H+M− v ×P) (2.29)

where ε0 is the permittivity of the vacuum, µ0 the magnetic permeability of the
vacuum and v means the velocity of the moving medium [62, 102]. On the right-
hand side of the equation (2.29) −v ×P is the moving electric dipole acting like
magnetic dipole; and it is not advisable to range this effect with the magnetic
polarization. Here we note that the acceptance of the (2.29) formula in such form
means that we must be content with small velocities and the relativistic effects are
excluded from the scope of our study.

In order to calculate the ponderomotive force we have to substitute equations
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(2.28) and (2.29) into Maxwell’s equations:

rotE+
∂B

∂t
= 0, (2.30a)

divB = 0 (2.30b)

1

µ0

rotB = j+ ̺ev + ε0
∂E

∂t
+

∂P

∂t
+ rotM− rot(v ×P), (2.30c)

ε0 divE = ̺e − divP, (2.30d)

and then we have to multiply vectorially the so-established first equation on the
right side by ε0E the third one by B and to add the two equations:

ε0 rotE×E+
1

µ0

rotB×B+ ε0
∂B

∂t
×E = j×B+ ̺ev ×B+

+ ε0
∂E

Dt
×B+

∂P

∂t
×B+ rotM×B− rot(v ×P)×B.

(2.31)

Now we apply the identity ( ◦ notation means dyadic multiplication)

rotu× u = Div

(

u ◦ u−

u2

2
δ

)

− u divu

at the first two terms of the left-hand side:

Div

[

ε

(

E ◦E−

E2

2
δ

)

+
1

µ0

(

B ◦B−

B2

2
δ

)]

=

=
∂

∂t
(ε0E×B) + ε0EdivE+ j×B+ ̺ev ×B+

+
∂P

∂t
×B+ rotM×B− rot(v ×P)×B.

(2.32)

During further transformations we use the identities

rotM×B = Div[M ◦B− (MB)δ] +MGradB, (2.33)

EdivP = Div(E ◦P)− (P grad)E (2.34)

and
∂P

∂t
− rot(v ×P) = ̺

dp

dt
−Div(v ×P) (2.35)

where the vector p is defined by relation

P = ̺p (2.36)

as well as (2.30b) and (2.30d). So we obtain:

Div

[

ε0

(

E ◦E−

E2

2
δ

)

+
1

µ0

(

B ◦B−

B2

2
δ

)

+ (MB)δ −M ◦B+E ◦P

]

=

=
∂

∂t
(ε0E×B) + ̺e(E+ v ×B) + j×B+ (P grad)E+

+ ̺
dp

dt
×B+MGradB−Div(v ×P)×B.

(2.37)
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To make clearer aforesaid formula one more transformation is required to which we
use the identity

Div(v ◦P)×B = Div(v ×B ◦P)− v×(P grad)B. (2.38)

So we obtain

Div

[

ε0

(

E ◦E−

E2

2
δ

)

+
1

µ0

(

B ◦B−

B2

2
δ

)

+

+ (MB)δ −M ◦B+ (E+ v ×B) ◦P

]

=

=
∂

∂t
(ε0E×B) + ̺ fEM

(2.39)

where

̺ fEM = ̺eE+(̺ev+j+̺
dp

dt
)×B+(P grad)E+v×(P grad)B+MGradB. (2.40)

We regard the equation (2.39) as a balance of momentum for the electromagnetic
field. On the left hand side, the tensor after Div is the electromagnetic stress tensor;
the ε0E×B quantity is called momentum density of the electromagnetic field while
̺ fEM is the ponderomotive force density.

This expression of the ponderomotive force is in full accordance with molecular
aspects and complies with the nonrelativistic dipole approach [62, 102].

The analysis of electromagnetic stress tensor is not mentioned; we only draw
attention to the fact that it is generally non-symmetric, which means that the
electromagnetic field plays a part in the transport of moment of momentum.

Finally we mention that the above-outlined separation of medium and electro-
magnetic field involves difficulties in case of diamagnetic materials, showing by this
the arbitrariness of the method [118].

Nevertheless, the reported method can be considered as useful as it describes the
effect of the electromagnetic field on mechanical motion rather simply.

2.7. Moment of momentum.

The continuum-mechanical definition of momentum defined by (2.8) and (2.9)
respectively is unambiguous only in the case where the velocity field is exactly de-
termined. For velocity the definition (1.11) seems to be exact; however, attention
should be drawn to a circumstance not negligible in modern continuum-theory;
i.e., that the real media are of molecular configuration and the aforesaid mode of
description leaves this fact out of consideration. If we intend to consider the molec-
ular background of a continuum, the starting point may not be the motion function
(1.4). We insist on the continuum model, henceforward, because of its simplicity
and effectiveness. However, we give a new meaning to the fundamental concept
by interpreting it on the basis of molecular configuration. We do not intend to
enter the labyrinth of such a model that reflects the details of the molecular mo-
tions; it would lead us to an extremely complicated problem and would not bring
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any considerable advantage in a fundamentally macroscopic theory. In interpret-
ing the continuum-mechanical conceptions, we adopt statistical considerations and
interpret the macroscopic quantities by expected values defined on the basis of the
theory of probability. The density ̺ of a continuum is substituted by the expected
value of corpuscular mass density; and the macroscopic momentum density ̺v by
that of microscopic momentum-density. The proper selection of event-space as a
basis of calculating expected value (taking into account the thermal motion of the
molecules) results in functions which do not show deviations within the molecular
length scale.

On the basis of density and momentum density thus obtained, we can interpret
the baricentric velocity (mentioned as velocity so far and even in the future). Based
on formulas (1.10), (1.12) and (1.13), we obtain the function (1.4). The conception
shows that the (1.4) motion function describes the motion of a continuum with
molecular structure only approximately and not in full detail.

So it does not seem surprising that the moment density of momentum is not
identical with the moment of momentum density. The moment of momentum can
be interpreted by formula

L = r× p+ Li (2.41)

or expressed with values referred to as local by formula

l = r× v + li (2.42)

where l is the specific moment of momentum, v=baricentric velocity, and li the
specific internal moment of momentum which can be interpreted as the macroscopic
manifestation of molecular rotations. The reality of concept of internal moment of
momentum is confirmed experimentally by the Einstein-de Haas effect. [38].

The balance of moment of momentum can be obtained with the aid of the theo-
rem of mechanical moment of momentum. The theorem of moment of momentum
says that the time derivative of moment of momentum is equal to the torque acting
on the body. In integral form, it is

d

dt

∫

V

(r× ̺v + ̺li) dV =

∫

A

(r×t+Π) dA+

∫

V

(r× ̺ f + ̺m) dV, (2.43)

where Π is the so-called couple stress tensor and m is the couple density per unit
mass. In differential form,

r× ̺
dv

dt
+ ̺

d li

dt
= Div(r×t+Π) + r× ̺ f + ̺m. (2.44)

This equation can be reduced if we use Cauchy’s equation of motion.
Substitute the term ̺dv

dt
into (2.44) from (2.15):

r×Divt+ r× ̺ f +
d li

dt
= Div(r×t+Π) + r× ̺f + ̺m,

whereof we obtain after reductions the equation

̺
d li

dt
= 2w(t) + DivΠ+ ̺m (2.45)
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where w(t) is the vector invariant of Cauchy’s stress tensor which is defined in
rectangular components by equations

w1 =
1

2
(t32 − t23), w2 =

1

2
(t13 − t31), w3 =

1

2
(t21 − t12) (2.46)

If neither couple stress nor torque density occur and the internal moment of mo-
mentum is zero, we conclude the symmetry of Cauchy’s stress tensor. In practically
all important cases it is true, but exceptions exist: e.g., the liquid crystals prove
experimentally the reality of couple stress tensor while the interaction with electro-
magnetic field serves as an example for torque density.

2.8. Electromagnetic couple density.

The torque exerted by the electromagnetic field is defined by the balance equation
(2.39) complemented by the hypothesis that no internal moment of momentum
exists in the electromagnetic field. The balance equation of moment of momentum
in the electromagnetic field is

∂

∂t

[

r× ε0(E×B)
]

+ r× ̺ fEM + ̺m = Div(r×T ) (2.47)

where m is the torque density exerted by the electromagnetic field to the medium,
and T is the electromagnetic stress tensor

T = ε0

(

E ◦E−

E2

2
δ

)

+
1

µ0

(

B ◦B−

B2

2
δ

)

+(MB)δ−M ◦B+(E+v ×B)◦P.

(2.48)
The meaning of fEM has already been given in (2.40). To calculate the specific
torque density we have to multiply vectorially both sides of (2.39) by the position
vector from the left and to subtract it from (2.47). Thus we obtain the equation

̺m = Div(r×T )− r×DivT = 2w(T ) (2.49)

from what, by using the expression (2.48),

̺m = M×B+P×(E+ v ×B) (2.50)

is given. This form of torque corresponds to the popular notion on electric and
magnetic dipole and confirms, at the same time, our presumptions [102].

In addition we mention that considerable torque does not generally belong to
the gravitational and inertial forces; therefore, the specific torque is mostly of elec-
tromagnetic origin. This justifies the notation m used in equations (2.47) to (2.50)
without any distinction.



CHAPTER III

DEFORMATION AND STRESS

Without knowledge of a specific force, Cauchy’s equation of motion (2.15) in
itself is as unproductive in continuum mechanics as Newton’s second law is in point
mechanics. To describe the motion, i.e. to solve the equations, the quantities that
describe the interactions must be known. In a continuum, these are the stress tensor
t and the body force f . To manage such a problem, one has to know on what and
how the stress tensor t and the body force f depend.

The body force f can easily be given (in the preceding chapter rather general
relationships were presented to determine it). The situation is rather different
with the stress tensor t. This comes from the fact that Cauchy’s stress tensor
describes the interactions of the neighboring parts of the medium; it has many
aspects according to the complexity of the molecular interactions.

The conditions determining the stress tensor t and the way of dependence is not
generally given; one has to rely on modeling. There are several ways for making
models. Since our main purpose is to survey modeling based on the methods
of irreversible thermodynamics, other widely used methods will only briefly be
discussed in this chapter. As a complete survey of methods is beyond the scope
of this book, only the methods of rheology are outlined and the most significant
results of modern non-linear continuum mechanics are presented.

3.1. Classical body models.

The simplest models from both the theoretical and simplest practical point of
view are known from classical mechanics. Considering the classical branches of
continuum mechanics as a pattern, a model in an exact theory is constructed in
a quantitative form. The variables that the stress depends on are given and also
the manner of dependence. In some cases the stress can also be regarded as an
independent variable and the dependence of deformation on stress (and perhaps on
other parameters: temperature, electric or magnetic polarization etc.) is given, as
well.

Any idealized medium is called a body. Such a body is realized in the classical
idea of rigid body, the perfectly elastic body obeying Hook’s law, the ideal fluid in
which the interaction is described by Pascal’s law and the laminar flow of viscous
fluid formulated by the Navier-Stokes equations. In the literature of rheology, these
bodies are called: Euclid-body, Hooke-body, Pascal-body, Newton-fluid or Navier-
Stokes-fluid and sometimes (in the special case of incompressibility) Stokes-fluid
[96, 137].

Let us discuss now the classical models by giving the forms of the material
equations that are called constitutive equations in modern literature.
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3.1.1. Rigid body. The rigid body (Euclid-body) represents the idealized limit
behavior of the solid material. During the motion of a rigid body, deformation does
not arise so tensor d defined in (1.26) is the unite tensor:

d = δ (3.1)

Since, deformation does not occur in a rigid body, this model will not be discussed.

3.1.2. Hooke-body. The Hooke-body is the material of classical elasticity.
A substantial property of this material is that the forces are proportional to the
deformation. It is not, of course, a definition of mathematical precision; however, it
reflects the essence of the matter. To establish an exact definition several problems
should be examined.

The first is that the tensor d or D, describing the deformation of the body,
depends also on the reference configuration. Nevertheless, the interactions between
the different parts of the body may not depend on the choice of reference configu-
ration. The classical theory of elasticity offers the observation that elastic bodies
change their shape as a result of load; after unloading they regain their original
shape. This means that there exists a favored configuration that the body takes
on if no stresses are applied. In finite pieces of a medium, it does not always hold;
but if one considers a sufficiently small vicinity of a point, the complications are
avoided [42, 57, 75, 96, 121, 144, 154]. If the stress-free configuration is chosen as a
reference configuration, Cauchy’s stress is non-zero in any deformed state. Choos-
ing the reference configuration in such a way, the defining constitutive equation of
Hooke’s body is given as

t = L(d − δ). (3.2)

For a Hooke-body, Cauchy’s stress tensor is a homogeneous and linear function of
tensor d − δ, which is regarded as the measure of deformation. Choosing another
tensor as an independent variable as a measure of deformation would, of course,
reach a different body-model which could also be called “Hooke-body”. Difficulties
arising from this are not very important in practice, since Hooke’s law — consti-
tutive equation (3.2) — gives a good approximation for real media only if small
deformations are concerned, in this case, the usual measures of deformation are
essentially the same.

As the homogeneous linear tensor-tensor function (3.2) reflects also the symmetry
of the medium, strictly speaking, the family of Hooke-bodies should be mentioned
according to the possible symmetry classes. Since we are not going to deal with the
mechanical behavior of crystals, we confine ourselves to isotropic media and (3.2)
is written in the much simpler form:

t = 2µ(d − δ) + λ tr(d − δ)δ (3.3)

which is the best known form of Hooke’s law [45]. Here µ and λ are the so-called
Lame-coefficients, which are generally regarded as constant. However, in real cases,
they depend on the temperature of the medium.
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3.1.3. Pascal-body. The model in the theory of ideal fluids rests upon the
hypothesis that shear stresses do not arise even during motion. Cauchy’s stress is
reduced to a spherical tensor and is given by a scalar pressure p:

t = −p δ (3.4)

An often used simplifying assumption is that fluid is incompressible and formulates
on the basis of (2.6):

divv = 0 (3.5)

The behavior of the incompressible Pascal-body is determined by equations (3.4)
and (3.5). For compressible Pascal-bodies the (2.6) form of the continuity equation
has to be used instead of (3.5); furthermore, to accomplish the model, one has to
ascertain on what and how the pressure p depends. A relatively simply case is the
model of the so-called barotrop-fluid where the pressure and the density are in a
unique relation.

The Pascal-body is an extreme model that undergoes without resistance the
deformations not associated with changes of volume. One can say that the Pascal-
body is the other extreme compared to the Euclid-body. Deformations are not
connected with surface forces.

3.1.4. Newton-body. The flow of numerous ordinary fluids is described by
excellent approximation with the help of an ideal fluid model (Pascal-body; see
hydrodynamics, ideal fluids [75, 137]); while in other cases, observations show sig-
nificant deviations. The observed deviations are described in a first approximation
by Newton’s law of viscosity, according to which in real fluids shear stresses also
arise during flow; these excess stresses, compared to the Pascal-body, are linear
functions of the speed of deformation. Mathematically, the constitutive equation
of the Newton-body is formulated as

t = 2η(Gradv)s + (ηv divv − p)δ (3.6)

where η and ηv are the shear and volume viscosity respectively, and p the pressure.
The determination of the latter is done as in the case of the compressible Pascal-
body. Confining the examinations to incompressible fluids, (3.6) takes the simpler

t = 2η(Gradv)s − pδ (3.7)

form. Substituting the constitutive equation (3.6) into Cauchy’s equation of motion
(2.15), the Navier-Stokes equations are obtained which, together with continuity
and the relation for the pressure, give the basis of the classical theory of viscous
fluids.

The body models surveyed so far are called classical bodies after M. Reiner
since classical chapters of mechanics are based upon them. The solution of the
differential equations has been well-known in many cases. The unsolved problems,
however, belong to the field of applied mathematics, not physics. The theory of
classical bodies plays an important role in the practice of engineering. Classical
bodies are also applied in many cases when the practice markedly deviates from



26 III. DEFORMATION AND STRESS

them. The main reason for this is the fact that, in the case of the discussed models,
the mathematical methods are thoroughly worked out and accessible.

A great many materials are applied in practice, the motion of which can not be
described by the preceding simple models. Such materials are, for instance, pastry,
polymer melts, steel preheated for forging or bitumen. To meet the needs of prac-
tice, rheology makes new models generalizing the classical constitutive equations.

3.2. Mechanical models of rheology.

The behavior of the rheological bodies are illustrated by mechanical models. The
properties of the Hooke-body are usually illustrated by a spring, the elongation of
which is proportional to the force (Figure 3.1). To illustrate a Newton-body, a
device similar to the shock absorber of vehicles called a ‘dashpot’ is used. In it,
the speed of elongation varies with the force (Figure 3.2). Modeling the materials
that show viscous and elastic behavior at the same time, rheology applies different
combinations of the Hooke- and Newton-body obtaining a variety of the so-called
viscoelastic bodies.&% "

Figure 3.1
Hooke-body

'% !
Figure 3.2

Newton-body

3.2.1. Maxwell-body. The mechanical model of the Maxwell-body is obtained
by connecting a Hooke-body and a Newton-body in series (Figure 3.3).(%! "

Figure 3.3
Maxwell-body

The deformation is split into two parts:

ε = ε1 + ε2 (3.8)

for which
τ = ηε̇1 (3.9)

and
τ = µε2 (3.10)

The equation of the Maxwell-body is attained to by combining them:

ε̇ =
1

η
τ +

1

µ
τ̇ . (3.11)

A characteristic feature of a Maxwell-body is that by keeping the deformation at a
constant value the stress gradually decreases and the Maxwell-body relaxes. This
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is demonstrated from (3.11). Assuming constant deformation, the left hand side of
(3.11) is zero and the solution of the homogeneous, first order, linear differential
equation reads:

τ = τ0 exp(−µ

η
t), (3.12)

where τ0 is the initial stress. The η

µ
quotient is generally called relaxation time.

In the case of rapidly changing stresses the derivative on the right hand side of
(3.11) is very large and the first term is neglected. Integrating the equation and
dissolving the integration constant into the measure of deformation, the relation

ε =
1

µ
τ (3.13)

is obtained, which is the equation of a Hooke-body. This means that, against a
rapidly increasing load, the Maxwell-body acts elastically.

)%
! "! "! "

Figure 3.4
Generalized Maxwell-body

Quite different properties appear when long and slow loads are present. Now the
second term is neglected on the right side in (3.11), returning so to the equation
of a Newton-body. Under slow loads the Maxwell-body behaves like a viscous
fluid. A lot of real material shows properties like the outlined ones (e.g. plastics);
however, the quantitative coincidence with the Maxwell-body is not complete in
general. To improve the quantitativity, new models are constructed connecting two
or more Maxwell-bodies in parallel. They are usually called generalized Maxwell-
body (Figure 3.4). The constitutive equations are obtained by splitting the stress
into parts:

τ =
∑

i

τi (3.14)

and (3.11) is used to each element:

ε̇ =
1

ηi

τi +
1

µi

τ̇i (i = 1, 2, . . . n) (3.15)
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The constitutive equation is attained by combining them.
The calculation is quite easily carried out with operators or supposing the time

dependence to be of exp(pt), where p is some complex number. Then the equa-
tions (3.15) simplify to algebraic ones, from which unknowns are expressed and
substituted into (3.14):

τ =
∑

i

p

1

ηi

+
p

µi

ε. (3.16)

The equation with operators is similar, then p is the differential operator.

3.2.2. Kelvin-body (Voigt-body). The model of the Kelvin-body is obtained
by connecting a Hooke-body and a Newton-body in parallel (Figure 3.5). The
resulting stress is split up to two parts:

τ = τ1 + τ2 (3.17)

for which
τ1 = ηε̇ (3.18)

and
τ2 = µε. (3.19)*% !"
Figure 3.5

Kelvin-body

Therefore the constitutive equation of the Kelvin-body is:

τ = µε + ηε̇ (3.20)

The Kelvin-body is a solid which deforms when loaded but after unloading it regains
its original form. The deformation of a Kelvin-body follows the load with delay.
This is shown when the stress suddenly arises, and remains constant. The solution
of the differential equation (3.20) reads:

ε =
τ

µ
[1 − exp(−µ

η
t)] (3.21)

The deformation gradually follows the changes of the load. This phenomenon is
called relaxation, where the quotient η

µ
is the relaxation time. Similarly as in the

case of the Maxwell-body, one can show that the Kelvin-body behaves viscously
against rapid loads while in the case of slow deformations has elastic properties.
For the sake of better quantitative agreement with materials of technology, new
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Figure 3.6

Generalized Kelvin-body

models are constructed by connecting several Kelvin-bodies in series, which are
called generalized Kelvin-body (Figure 3.6).

The constitutive equation is obtained by splitting up the deformation;

ε =
∑

εi, (3.22)

and applying (3.20) to each element connected in series:

τ = µiεi + ηiε̇i (3.23)

and combining them. It can also be given in a complex number form:

ε =

(

∑ 1

µi + ηip

)

τ. (3.24)

Besides the above-discussed generalized Maxwell- and Kelvin-bodies, further me-
chanical models can be constructed by other combinations of the Hooke- and
Newton-bodies. The models attained in this way are not new. Literature [137,
144] is recommended to readers who are interested in the details.

3.2.3. The rheological model of plastic flow. A comprehensive survey of
the methods of linear viscoelasticity would require too much space and the alter-
native methods already have an extensive literature [27, 84, 89, 132, 155]. It is
appropriate here to give a short account of the rheological methods describing the
bodies deviating from linearity.

An important model of rheology is the ideally plastic body, describing the per-
manent deformations due to load exceeding the elastic limit.

In the terminology of rheology, the ideally plastic body is called St. Venant-body.
On balance, it is not a well-defined body but rather a number of models behav-
ing similarly and differing from each other just in the correlation of the material
coefficients appearing during different ways of loading. The St. Venant-body is
characterized by the constitutive relationships

τ = τ0

τ = −τ0

−τ0 < τ < τ0

if ε̇ > 0

if ε̇ < 0

if ε̇ = 0

(3.25)

(e.g. in the case of simple shear) (Figure 3.7). The mechanical model of the
St. Venant-body is the frictional joint that does not yield up to a critical force but
elongates freely if affected by an excess force (Figure 3.8).
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ε̇

τ0

−τ0

Figure 3.7

-% #
Figure 3.8

St. Venant-body

Combination of the St. Venant-body with either the Newton-body or the Hooke-
body makes possible the introduction of further body models [138]. The visco-
plastic, elastoplastic and viscoelastic bodies can be obtained this way, or by more
complicated combinations. Because of the non-linear behavior of the St. Venant-
body, the hierarchy of these cannot be classified simply like the system of the
viscoelastic bodies. The mechanical models of some bodies are illustrated in Figure
3.9. Their behavior is not examined in detail; the mechanical models are self-
explanatory..% ! "#

Bingham-body

/%# "
Prandtl-Reuss-body0% ! "#"

Schedoff-body1% !#" "!
Schofield-Scott Blair-body

Figure 3.9
Some visco-elasto-plastic bodies

There are some elastoplastic bodies together with their elongation diagram in
Figure 3.10. To calculate using the models, one must take into account that the
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stress is not a single valued function of the deformation, according to the appearance
of the plastic flow. So on the diagrams belonging to the figures, the history of the
deformation is also denoted.2%# "
3

τ

ε

a.)

4% "#
5
τ

ε

b.)6% " "#
7

τ

ε

c.)

8% " "##
9

τ

ε

d.)

Figure 3.10
Some elasto-plastic bodies and their behavior
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3.2.4. Three dimensional loading of the ideally plastic body. Plastic
behavior is typically non-linear and so the discussion of its possible constitutive
equations can only be solved more or less by the methods of modern non-linear
mechanics, which is to be discussed later. At this point, it is satisfactory to survey
the methods of plasticity that can be assumed classical today. All the models start
from the hypothesis that the deformation of the plastic materials can be divided
up into two parts: an elastic- and a permanent deformation. A further hypothesis
is that the tensor describing the speed of permanent deformation can be obtained
from the traceless part of the stress tensor (stress deviator) with the help of a scalar
multiplier. For ideally plastic bodies, i.e. when there is no elastic deformation, the
stress deviator is gained by multiplying the deformation rate with some number:

t0 = λd̊. (3.26)

According to the classical theories, the multiplier λ has to be chosen so that the
load corresponding to tensor t0 would satisfy the yield condition. In calculation,
equation (3.26) is to be substituted into the yield condition

f(t0) = 0 (3.27)

and hence the equation
f(λd̊) = 0 (3.28)

is obtained. From this equation, λ can be determined. This also means that

f(t0) = 0 (3.29)

is regarded as the condition of the plastic flow. The form of function in (3.27) may
not depend on the choice of the coordinate system, but it can contain the trace of
the tensor t as a parameter, i.e., the scalar pressure.

To describe ideally plastic bodies in a traditional way, two kinds of flow condition
are used: the Mises- and the Mohr-condition. Because of its simple analytical form,
the Mises-condition is easier for calculating complicated flow patterns:

tr(t2
0
) = 2k2. (3.30)

According to this, the constitutive equation reads:

t0 =
k
√

2
√

tr(d̊2

0
)
d̊0 (3.31)

This yield condition was proposed by Mises, who emphasized just the simplicity. He
also showed that his method gave the same result as the accepted flow conditions,
apart from a difference of a few percentage points. Later, Hencky arrived at the
same condition starting from a hypothesis that the medium can store elastic energy
only up to a limited value [137].

According to the Tresca-condition, a special case of Mohr’s, plastic flow arises
if the shear stress reaches a critical value on any surface in the medium. This
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:τ σ

τ0

Figure 3.11
Tresca’s yield condition in Mohr’s diagram

condition is clearly illustrated on the Mohr-diagram. On the Mohr-diagram, the
shear stress is on the vertical axis, so the meaning of the Tresca-condition is that
the horizontal line is the tangent of the circle with the largest radius (Figure 3.11).

It is seen from the figure that the Tresca-condition means that the difference
between the largest and smallest eigenvalues of the stress tensor is twice as much as
the value of the critical stress. To formulate this condition for analytical calculations
is rather difficult.

The Tresca condition was generalized by Mohr. According to the Mohr-condition
the critical shear stress can depend on the normal stress arising on the given surface.
This means that the Mohr circle touches some other curve and not a horizontal line.
This curve in practice is mostly a slightly sloping line or an elongated ellipse (Figure
3.12), the shape of which is induced solely by practical applicability.

;τ σ

Figure 3.12
Mohr’s yield condition

3.2.5. Further non-linearities. The above-discussed bodies apply very well
in most of the practical cases, especially if the deformations are small. There are,
however, large deformations where neither the linear constitutive equations nor the
models of plasticity work well. A typical example of this is the deformation of the
vulcanized rubber.

Vulcanized rubber regains its original shape after having unloaded. For slow de-
formations, we have a good approximation (in equilibrium, an exact one) if stating
that the stress depends only on the deformation:

t = t(d) (3.32)
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In isotropic medium, this function has the form

t(d) = f0δ + f1d + f2d
2 (3.33)

where f1, f2, f3 are functions depending on the invariants of tensor d. In the
particular case of the rubber elasticity, equation (3.33) becomes

t0 = G

[

d2 − 1

3
(trd2)δ

]

(3.34)

where G is the shear modulus. The forms of the functions in (3.33) are

f0 = −1

3
(I2

1
− 2I2), f1 = 0, f2 = G (3.35)

where I1, and I2 are the usual invariants of the tensor d which are given with the
eigenvalues in the form

I1 = d1 + d2 + d3, I2 = d1d2 + d2d3 + d3d1

Supposing the existence of an elastic energy, the elastic potential is introduced as

ψ = ψ(I1, I2, I3) (3.36)

from which the (3.33) form of the stress is derived by differentiating with respect
to the components of the tensor d:

dψ = (d−1t) : dd (3.37)

The materials which have elastic potential are usually called hyperelastic bodies
[42, 96].

Non-linear behavior is observed quite often in fluids as well. The qualitative
form of the relation between force and motion was found by Oswald in 1926. The
relation between shear rate and shear stress is shown in Figure 3.13. It is called
Oswald-curve [129, 130].

<τ ε̇

α
β

Figure 3.13
Ostwald’s curve
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The survey of basic methods of rheology is closed by mentioning the phenomenon
of tixotropy. The non-linearity, described by the Oswald curve, can also be assumed
as a decrease in the viscosity of the fluid caused by shear. Considering the molec-
ular structure, the phenomenon is interpreted by supposing that the equilibrium
structure of the fluid disintegrates during flow.

This consideration does not explain the fact that most of the measurements result
in a decrease of viscosity and an increase is rare. According to the explanation based
on the change of the structure, this kind of phenomenon is usually called structural
viscosity.

There are several media in practice in which the structural changes follow the
motion but slowly. The viscosity decreases with some delay. This latter phenome-
non is called tixotropy. Since, in most of the experiments, the viscosity decreases,
the term tixotropy is reserved for materials decreasing viscosity. The behavior of
the materials increasing viscosity during motion is often called reopexy. Sometimes
it is called dilatancy, too. There is no common terminology for the above field
[137]. This deficiency is explained by the fact that an increase of viscosity caused
by motion is rare, it is observed in some colloids of complicated structure, e.g. in
some clay-water suspension and in some paints.

3.3. On the methods of modern continuum mechanics.

In the last decades significant results were achieved in the non-linear mechanical
theory of continua. It was motivated, above all, by the claims of practice and
technology. On the one hand, engineers created the framework of the new methods;
on the other hand, mathematicians also took part in it. They could manage to
formulate and solve the non-linear mathematical problems put forward by non-
linear processes, and did not shrink back even from applying the most abstract
chapters of modern mathematics.

The modern non-linear continuum mechanics describes the motions of continua
in quite a different way than rheology does. It rejects creating models as a gen-
eral method and approaches the solution of the problem from physics and even
from philosophy in an abstract way. The deductive procedure applies extended
mathematics and uses, almost exclusively, the methods of classical physics. This
theory successively goes forward from general towards particular and therefore the
fidelity of the theorems and conclusions can easily be confined. Having listed the
basic principles, the main features will be shown in section 3.4., on the example of
“incompressible, simple fluid”.

Nevertheless, the circumstances determining the stress play a central role, and
the basic principles are formulated in general terms. The reason for the great
generality is that the basic principles — on which the whole method is based — hold
not only for mechanical interactions, but also for the largest range of phenomena.

In the spirit of this, the definition of the constitutive equation is the following:
The constitutive equation is the mathematical formulation of the essential relation-
ship between the basic quantities determining the physical process and depending
on the properties of the medium. The constitutive equations — which are often
called material equations — give the models with mathematical accuracy for the
examined media. This is the reason for the name. Obviously, the equations defining
rheological models are particular constitutive equations.
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Using the general method, one does not start with the detailed definition of a
model but tries to postpone as much specification as possible. Some of them are
needed, of course, right at the beginning since the aim is the mechanical descrip-
tion — and remaining on the level of philosophical generality is rather fruitless.
Therefore the definition of a constitutive equation is reformulated.

The constitutive equation in continuum mechanics is the mathematical form of
how Cauchy’s stress tensor depends on the motion. In its simplest form all non-
mechanical effects are ignored. This means that the constitutive equation of the
medium brings the motion into relation with the stress tensor, i.e. the constitutive
equation is the relation between the motion, (1.4), and the stress:

x(X, t) 7→ t(x, t). (3.38)

We mention that the relation (3.38) refers to the mechanism of the interactions in
the medium. Its role in the description of motion is just to get a relationship, by
substituting it into Cauchy’s equation of motion, which is satisfied by the function
of motion, and from which the particular form of the function of motion (i.e. the
details of the motion) can be determined. At this point the question arises: how
can the mapping (3.38) be formulated mathematically? The possible mathematical
forms are restricted by the following principles:

a. The principle of determinism states that the structure of the stress field at a
given moment of time is determined by the section of the function of motion that
belong to t ≤ t0. This means that the medium can have memory but it is not gifted
with prophecy; i.e., the stress can depend on the history of the motion, even in a
complicated way, but it does not depend on the motion in the future.

b. The principle of the local action states that to determine the stress at a given
point X0 it is sufficient to know the function of motion in any small neighborhood
of the point.

The principles of determinism and local action are guides in determining the
stress tensor in a given point and in a given moment. It is sufficient to know the
history of the function of motion in an arbitrary small vicinity of this point. The
question immediately arises: how accurately must the history of deformation be
known? The arbitrarily small vicinity suggests that a partial sum of the Taylor-
series belonging to a given point of the function of motion provides a satisfactory
level of accuracy. This, of course, can not be stated in general since the errors of the
partial sums of the Taylor-series can be made arbitrarily small only by decreasing
the vicinity; and by decreasing the vicinity, the satisfactory accuracy increases. So
one single partial sum can not be suitable for every media but one of the partial
sums provides satisfactory accuracy for any medium. This fact makes possible the
classification of the media from which only the first category is defined according
to the present state of practical claims:

A medium is called simple, when the linear partial sum of the Taylor-series
determines the stress. This means that in the case of a simple medium it is sufficient
to know the history of the deformation gradient tensor:

t(X, t) =
∞

T
s=0

{x(X, t − s)}, (3.39)
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where T is a functional which relates a second order tensor to a tensor valued
s-dependent function.

Further restrictions are imposed upon the form of the functional by
c. The principle of homogeneity of time. It states that the form of the functional

does not change by shifting time:

t(X, t + τ) =
∞

T
s=0

{x(X, t + τ − s)}. (3.40)

d. The principle of objectivity states that the form of constitutive equations is
independent of the frame of reference; i.e., the behavior of the medium is objective
and does not depend on the subjective elements of the description. The consequent
application of the principle of objectivity contributed significantly to the success of
the modern continuum mechanics, so it is worth formulating it in detail.

Let us regard a medium, the mechanical behavior of which is described by a
formula like (3.39), and beside the chosen reference frame, let us respect another
reference frame, as it has been done in (2.6). The new frame is attained by the
transformation:

x∗ = Q(t)[x − a(t)]

The principle of objectivity states that to determine the stress, any of the frames
is suitable; so it is also a possible procedure converting the deformation gradient
to the frame nominated by the asterisk and then calculating the form of the stress
tensor in this system according to (3.39) and at last turning back to the original
frame. The result obtained in this way has to equal the one obtained without
changing the frame. Since

dx∗ = Q(t)dx

and
dx = xdX, dx∗ = x∗dX

so
x∗ = Q(t)x

Applying this to a simple material, the statement can be formulated:

t(X, t) =
∞

T
s=0

{x(X, t − s)} = QT (t)
∞

T
s=0

{Q(t − s)x(X, t − s)}Q(t), (3.41)

where Q(t) can arbitrarily depend on time.
Nevertheless, the principle of objectivity can be generally applied; naturally the

mathematics is more complicated for cases other than simple media.
e. According to the principle of material invariance the elements of the isotropy

group describing the material symmetry leave the constitutive equation invariant.
This means that transforming the medium, at first, from an X reference config-

uration to an X∗ reference configuration, which is equivalent to the previous one
i.e. the transformation

X∗ = X∗(X) (3.42)

corresponds to the symmetry of the medium. Then the same stress state belongs
to the motion

x = x(X, t) (3.43)
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and to the motion
x = x[X∗(X), t] (3.44)

in any moment and in any point. In a simple material, the relation

dx = x∗dX∗ = x∗AdX (3.45)

involves the equality
∞

T
s=0

{x∗(X, t − s)} =
∞

T
s=0

{x(X, t − s)A(X)} (3.46)

where the meaning of the tensor A is given by

dX∗ = AdX.

The determinant of the tensor A describing symmetry is one or minus one. Other-
wise the volume of the material would change with symmetry operation according
to (1.8), which is impossible since the inverse of the symmetry operation and eve-
ry power of it is also a symmetry operation. Consequently, if the volume of the
medium decreased during the operation A or A−1, after repeating the operation
several times, the volume could decrease endlessly, which contradicts the indestruc-
tibility of the matter. This means that the group of symmetry operations is a
subgroup of the unimodular group.

According to this, media can be classified. The media whose symmetry is de-
scribed by the complete unimodular group are called isotropic fluids. If the sym-
metry group of the medium in some configuration is identical with the orthogonal
group, it is called isotropic solid; and if it is identical with some subgroup of the
orthogonal group, it is called crystalline material. The mentioned categories do not
utilize all the mathematical possibilities; namely, it is imaginable that the unimodu-
lar group also has a real subgroup which is not similar to any part of the orthogonal
group. The materials of such symmetry are usually called subfluids, e.g., the liquid
crystals. In this chapter only fluids are to be discussed [27, 54, 56, 100, 120, 152,
153, 162].

In the handbooks of modern continuum mechanics, further principles are formu-
lated, as well. They are listed bellow, although they are not used in this book:

f. The principle of coordinate invariance states that the results of calculations
can not depend on the coordinate system.

g. The principle of dimensional invariance states that the form of the consti-
tutive equations can not depend on the choice of the units of measure.

h. According to the principle of compatibility, the constitutive equation can
not contradict any fundamental physical law.

i. According to the principle of mathematical completeness, a constitutive
equation together with the fundamental physical laws have to display a
uniquely soluble mathematical problem.

j. The principle of equipresence states that if an independent variable appears
in one of the constitutive equations it can appear in every constitutive equa-
tion.

k. According to the principle of unification, different constitutive variables
that characterize particular materials should be present in a constitutive
equation for all the above materials. This principle states the possibility of
generalization.



3.4. THE THEORY OF THE SIMPLE SHEAR FLOW. 39

3.4. The theory of the simple shear flow.

Let us examine a simple fluid which is in mechanical interaction with its envi-
ronment. Let the examined motion be simple shear flow:

dx1

dt
= κx2,

dx2

dt
=

dx3

dt
= 0. (3.47)

Since it is a fluid and its volume does not change, the configuration at any moment
can be chosen as a reference configuration. Let us choose a t0 moment, when the
stress is to be determined and the configuration for reference. In doing so one
has to determine the time dependent coordinates of the individual particles. The
equations (3.47) can easily be solved:

x1 = κC2t + C1, x2 = C2, x3 = C3. (3.48)

Since in the moment t0 xi = Xi (i=1, 2, 3), the constants Ci can be determined
and so (3.48) takes the clearer form:

x1 = κX2(t − t0) + X1, x2 = X2, x3 = X3. (3.49)

According to this, the matrix form of the deformation gradient is:

x =





1 κ(t − t0) 0
0 1 0
0 0 1



 (3.50)

A useful notation will be:
x = δ + κ(t − t0)M (3.51)

where

M =





0 1 0
0 0 0
0 0 0



 (3.52)

To determine Cauchy’s stress, equation (3.51) is substituted into (3.41), so

t0(X, t0) =
∞

T
s=0

{x(X, t0 − s)} =
∞

T
s=0

{δ − sκM} (3.53)

is obtained. Since there is no volume change, the motion determines the stress leav-
ing a scalar pressure free, which can be determined when integrating the equations.
Therefore the traceless part of the stress tensor appears on the left hand side of
(3.53).

Since the form of the function, which is the independent variable of the func-
tional, depends solely on tensor κM , the functional reduces to a symmetrical,
tensor valued function depending on a tensor variable:

t0(X, t0) = T (κM) (3.54)
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According to the principle of objectivity

T (κM) = QT T (κQMQT )Q (3.55)

has to hold for any Q orthogonal tensor. It should be mentioned that QMQT

appears as the variable of T instead of QM , since the reference configuration is
also changed simultaneously when applying the Q transformation. According to
the principles of objectivity and material invariance, equation (3.53) transforms to:

∞

T
s=0

{δ − sκM} = QT (t0)
∞

T
s=0

{Q(t0 − s)(δ − sκM)A}Q(t0) (3.56)

where, choosing A = QT , δ − sκQMQT becomes the argument of the functional
T . The relation (3.55) means that any Q tensor for which the equality

QMQT = M (3.57)

holds, leaves also the stress tensor invariant. Since the only non-trivial solution of
(3.57) is the tensor

Q =





1 0 0
0 1 0
0 0 −1



 , (3.58)

the equations
T13 = T23 = 0 (3.59)

are obtained from the invariance of T . This means that the function T (κM) has
to take the form

T (κM) =





T11(κ) T12(κ) 0
T12(κ) T22(κ) 0

0 0 −T11(κ) − T22(κ)



 (3.60)

Using the orthogonal tensors

Q1 =





−1 0 0
0 1 0
0 0 1



 and Q2 =





1 0 0
0 −1 0
0 0 1





in equation (3.55), the relations

T11(κ) = T11(−κ), T22(κ) = T22(−κ), −T12(κ) = T12(−κ) (3.61)

are obtained.
To get the expressions used in the literature, we introduce the notations:

σ1(κ) = 2T11(κ) + T22(κ),

σ2(κ) = 2T22(κ) + T11(κ), (3.62)

τ(κ) = T12(κ).
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Their meaning can easily be expressed by the components of the stress tensor, since
according to equations (3.62) and (3.54)

t = t0 − pδ =











−p + 2σ1 − σ2

3
τ 0

τ −p + 2σ2 − σ1

3
0

0 0 −p − σ1 + σ2

3











(3.63)

from which

σ1 = t11 − t33, σ2 = t22 − t33, τ = t12 (3.64)

are gained, where tij are the components of the stress. The above relation makes
it reasonable to call σ1 and σ2 normal-stress differences. The σ1(κ), σ2(κ) and τ(κ)
functions are the so-called viscometric functions. It can be shown from (3.61) that
the shear stress is an odd function, while the normal stresses are even functions of
the shear rate κ.

A demonstrative result of the general theory presented is that the viscometric
functions correlate with the Ostwald-curves, given in subsection 3.2.5. (the shear
stress depends on the shear rate) and gives also a qualitative account on the so-called
normal-stress effects. Unfortunately, the actual form of the viscometric functions
can not be derived from the general theory.

3.5. Viscometric flows.

The viscometric functions presented above can be applied not only to simple
shear flow, but also to every case when the relative deformation gradient takes the
form :

x = Q(t)[δ − κ(t − t0)M ] (3.65)

where Q is an arbitrary orthogonal tensor, and M is the dyadic product of two mu-
tually perpendicular unit vectors. This is a direct consequence of (3.56). The flows
of this kind are called viscometric since they occur in the most familiar viscometers.
A detailed discussion of viscometric flows is given in [26].

3.6. Closing remarks.

In this chapter modern information on the relationship between deformation
and stress, based upon macroscopic considerations, has been briefly summarized.
The methods listed can be classified into two groups. The first group contains the
methods of rheology which today are assumed to be classical; the other one includes
methods of modern non-linear mechanics, built upon general considerations and
applications of functionals.

Both methods have deficiencies as far as the practical application is concerned.
The bodies of rheology are complete from the viewpoint of the description of me-
chanical motion, i.e. accepting the validity of a given body any problem can be
solved by mathematical methods. The system of bodies is, however, not complete;
moreover, there is no exact criterion according to which a proper model to describe
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a given material can be chosen; i.e., the choice of the model depends on the intu-
ition of the researcher. Nor have we any method at our disposal to denote a way
of further generalizations leading to better models.

Modern methods based upon functionals have made viscometric flows completely
known for simple fluids, and the practical utilization requires only the tabulation of
the viscometric functions for particular materials one by one, similar to the tables
of viscosity for Newtonian fluids. It should be mentioned, however, that the flow
in tubes is not strictly viscometric, since the required conditions are not realized
at the entrance and the end sections. The condition of a stationary state is also
problematic. Until the stabilization of stationary flow, the flow is not viscometric.

At this point a serious problem arises. The latter theory can hardly state any-
thing about non-viscometric flows, even about whether a stationary state exists or
not some time after the start of a flow. This problem is eased by the principle of
fading memory which states that the effect of an action on a fluid is the weaker
the earlier it happens. According to this the occurrence of the stationary state is
forecasted, but nothing general is stated on the time when it happens. So in a tube
with a circular cross-section, for example, even a rough estimation can hardly be
given for the length of its entrance and end section. Further on, all the consid-
erations have been restricted to the simple fluid, the behavior of which does not
depend on gravitational fields nor on inertial forces. This means that the theory of
the simple fluid is an elegant way of neglecting these latter effects.

All these deficiencies urge us to look for further methods. One is based upon
Onsager’s theory of irreversible thermodynamics. The above-mentioned deficiencies
are eliminated, and the complete hierarchy of the bodies is given by the sequence
of constitutive equations derived by the methods of irreversible thermodynamics.
Placing blame on the thermodynamic theory for being linear is rather misleading,
since the linearity in the sense of Onsager’s theory much exceeds the linearity in
the sense of rheology. Therefore the characteristic features of the experimentally
observed non-linearities can properly be accounted for by Onsager’s linear thermo-
dynamics. It is rather a new theory, so the question of quantitative agreement can
be discussed, above all, by comparing it to the former theories.

Before dealing with deformations by thermodynamic methods, the basic princi-
ples of Onsager’s non-equilibrium thermodynamics are summarized in the following
chapter.



CHAPTER IV

NON-EQUILIBRIUM THERMODYNAMICS

4.1. On the first and second law of thermodynamics.

The first law of thermodynamics postulates the conservation of the energy of
macroscopic systems. Energy can neither be produced, nor can be destroyed; con-
sequently, the energy increase of a physical object during any real process is exactly
equal to the energy influx into the object. For a system that is closed with respect
to chemical component transport this law reads

∆U = Q + W. (4.1)

Here ∆U is the energy increase in the system, Q is the amount of heat being flown
into the system and W is the work done on the system. The sign of W is taken
negative if the system performs the work, Q is negative when the heat flows out
of the system, so ∆U is negative if the energy of the system has decreased. The
meaning of the first law of thermodynamics is clear in its traditional form, and
misunderstandings seldom arise from alternative interpretations.

In thermodynamics, the concept of entropy is usually introduced through the
theorem on the impossibility of the (so-called) perpetuum mobile of the second
kind. The introduction of entropy is necessary to get a general formulation for the
amount of work a system is able to perform which is determined by the properties
of both the system and its environment, collectively.

Let us consider the formula, well known from thermostatics [93].

W = U − U0 + T0(S0 − S) − W e (4.2)

where U is the internal energy and S is the entropy of the system, while T0 is
the absolute temperature of the environment. The symbols U0 and S0 denote the
internal energy and entropy of the system, respectively, after the equilibrium with
the environment is reached, while W e stands for the minimum work done on the
environment. If, during the process, the only work done on the surrounding is the
work of expansion, then

W e = p0(V0 − V ). (4.3)

Naturally, W e may contain further terms, too.

The formula (4.2) has been known for a long time; it provided the basis to the
introduction of the exergy, which quantity served for the easier description of the
available work [10].
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Defining the non-equilibrium entropy, we make use of the fact that each quantity
in (4.2) is well defined, even for non-equilibrium systems. Thus entropy is defined,
by a plausible extension of equation (4.2), as

S = S0 +
1

T
(U − U0 − W − W e). (4.4)

This definition is based on the following hypotheses:

i. The environment is a sufficiently large, but finite, thermostatic system; its
changes of state do not alter considerably the state of systems in equilibrium
with it.

ii. From the system in a given environment only a finite amount of work is
available, the least upper bound is W .

iii. The final state of the system in the given environment is uniquely deter-
mined.

iiii. Any process occurring without external motivation involves the ability of
performing work.

These hypotheses are supported by the empirical background of thermodynamics.
The entropy defined by (4.4) suffices the requirements of non-equilibrium ther-

modynamics, viz. entropy is a totally additive set function of state which, in an
adiabatically closed system, can only increase.

The entropy, defined so, does not depend on the nature of the environment; that
is, the entropy is a state function, even out of equilibrium.

4.1.1. The state variables. Let us consider the motion of a medium with a
macroscopically uniform chemical composition that is homogeneous in space and
constant in time. According to experience, the equilibrium properties of such a
medium are functions only of temperature deformation and the electromagnetic
field intensities (if the presence of these fields is also assumed). So the local equi-
librium state of the medium is uniquely determined by the tensor d, describing
the deformation, the temperature T , the electric field E, and magnetic induction
B. Using the terms of classical thermodynamics, the listed quantities are the state
variables. Any other property of the medium can be given as a function of these
variables. Of course, the form of these functions depends on what the particu-
lar medium is. Equilibrium thermodynamics deals with the possible form of these
functions. In the following, we shall regard these functions as known and put our
attention on processes.

In equilibrium, the state variables do not depend on time and their spatial dis-
tribution is determined by the environment. There are cases, however, even out of
equilibrium when the specific entropy and other properties of the system can still
be given in the space of the equilibrium state variables. For such media — more
exactly — for such processes the potential functions of equilibrium thermodynam-
ics are also applicable (with proper restrictions, of course). In this situation the
processes are caused by the interaction of spatially different parts of the system.
So, if the interaction of a sufficiently small part of the medium and its environment
is prevented somehow, then, after the interaction has ceased, the properties of this
separated part will be constant. Systems that can be described in the space of
the equilibrium state variables in non-equilibrium states, as well, are referred to
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as systems in local equilibrium. It means that the systems in local equilibrium
can be characterized locally by the same variables in non-equilibrium as in equilib-
rium; that is to say,equilibrium and non-equilibrium states differ only in the spatial
distribution of the variables.

In most of the practically important cases, the media are out of local equilibrium;
i.e., not even the local properties can be given with the help of the equilibrium state
variables only. Thus the space of the non-equilibrium states has more dimensions
then the space of the equilibrium states has. The description of the non-equilibrium
state requires further variables, which are referred to as dynamic degrees of freedom
or dynamic variables. The dynamic degrees of freedom serve the phenomenological
description of dissipative structures developing in the course of the motion.

4.2. Balance equations.

Balance equations play an important role in all field theories; they are funda-
mental, especially in the non-equilibrium thermodynamics of continua. Laws of
conservation (of mass, charge etc.) are formulated in balance equations. However,
balance equations of non-conservative quantities are defined as well. Since the bal-
ance equations of different extensive quantities show considerable similarity, we give
their general form first.

4.2.1. The general form of balance equations. Let us consider an extensive
quantity A of arbitrary tensorial order. For the sake of convenience, we use a
cartesian frame and in the case of a quantity A of non-zero tensorial order, its
components to be examined one by one. In field theories, it is essential that the
extensive quantities be totally continuous, differentiable set functions; viz., for any
extensive quantity A there exists a density ̺A so that for any volume V

A =

∫

V

̺A dV. (4.5)

For the sake of further considerations, it is useful to introduce the specific quantities:

a =
̺A

̺
(4.6)

the quantity of A per unit mass. Making use of this, equation (4.5) reads

A =

∫

V

a̺ dV (4.7)

The change rate of the quantity A in a volume V is

Ȧ =
d

dt

∫

V

a̺ dV (4.8)

even for a moving volume V . Specifically, if the volume is moving together with
the medium, then — due to the conservation of mass — equation (4.8) reads

Ȧ =

∫

V

̺
da

dt
dV. (4.9)
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The substantial time derivative da
dt

is the total time derivative of the specific quantity
a taken in a point moving together with the medium.

The cause of the changing of the quantity A can be twofold: one is the transport
through the boundary; the other is the production within the volume V . To describe
these, two further quantities are introduced. The first is the current density JA,
describing the transport of A. By its help the quantity dnA — that is the amount of
A flown, during the time dt, through the surface element dA, which moves together
with the medium — can be given as

dnA = JA dA dt. (4.10)

The tensorial order of the current density JA is naturally higher by one then the
order of the quantity A, as seen from the expression (4.10).

The other quantity to be introduced is the source density σA. By its help the
production diA of A in the volume dV during the time dt can be written as

diA = σA dV dt (4.11)

In terms of the quantities introduced above, the rate of change of the quantity A
can be expressed as

Ȧ =

∫

V

̺
da

dt
dV = −

∮

JA dA +

∫

σA dV. (4.12)

In this formula volume V is moving together with the medium. Since this expression
is valid to any co-moving volume, after applying Gauss’ theorem, the differential
equation

̺
da

dt
+ div JA = σA (4.13)

is obtained, which is called the substantial balance equation for the quantity A.

Using the identity

̺
da

dt
= ̺

∂a

∂t
+̺(v grad)a = ̺

∂a

∂t
+a

∂̺

∂t
+adiv(̺v)+̺(v grad)a =

∂̺A

∂t
+div(̺av),

the corresponding local balance equation is derived:

∂̺A

∂t
+ div(JA + ̺av) = σA. (4.14)

Balance equations have occurred already in the previous chapters, but more con-
ventional notations were followed. The comparison requires a few transformations.
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4.2.2. The balance of mass. If the extensive quantity A is the mass, then
the mass balances are obtained from the general forms by substituting

A = m, ̺A = ̺, a = 1.

Comparing the local mass balance

∂̺

∂t
+ div(Jm + ̺v) = σm (4.15)

— obtained so — to equation (2.6), it is seen that

σm = 0 and Jm = 0. (4.16)

The vanishing of the source density expresses the conservation of the mass, while
the vanishing of the substantial mass current density expresses that the mass is not
shifted relative to itself.

4.2.3. The balance of momentum and moment of momentum.

Cauchy’s equation of motion for continua is the substantial balance equation of
momentum. The current density of momentum is Cauchy’s stress tensor multiplied
by (−1) and the source density of momentum is the force per unit volume, ̺f .

We mention that though the momentum is conserved in an inertial system, its
source density is not necessarily zero. The cause of this is that body forces (i.e.
fields) also transport momentum; thus, the source density has its “credits” in the
field. The situation is essentially different in an accelerating frame. Then the force
density contains the inertial forces, too, which describe production of momentum
without external “credit”.

The balance equation for the moment of momentum is equation (2.44). Thence,
its current and source density are

Jl = −r × t − Π (4.17)

and

~σl = r × ̺f + ̺m. (4.18)

respectively. The balance of the internal moment of momentum is equation (2.49),
whence

Jli = −Π, ~σli = ̺m + 2W(t). (4.19)

4.2.4. The balance of kinetic energy. The balance of the kinetic energy
derives from Cauchy’s equation of motion by multiplying its sides (scalar product)
with the velocity. After a rearrangement it reads

̺
d

dt

(

v2

2

)

+ div(−vt) = ̺fv − t : Gradv, (4.20)

where t : Gradv = tr(tT Gradv).
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4.2.5. The balance of the internal energy. The balance of the internal
energy is approached through the law of energy conservation. Let ε denote the
specific total energy of the continuum. In ε all kinds of energy — being present
at a locus — are included, except the energy of the fields of the body forces. The
latter one covers all energy types that are usually referred to as potential energy.

The energy increase in a volume moving together with the medium is due to
two causes: First, the energy flows in through the boundary from the surrounding
medium; second, the fields supply energy. The influent energy is usually divided
into two parts: the first of which is the mechanical work, while the second is the
heat flow. The energy supply of the field is usually also split into the work and
the heating effect of the field. The latter one does not occur in gravitational, but
in electromagnetic fields. Finally, the work by a field can also be regarded of two
types: viz. the translational work of the body force and the work of the torque.

Thus the conservation of energy is formulated as

d

dt

∫

̺ε dV = −
∮

Jq dA +

∮

vt dA +

∮

~ω0Π dA+

+

∫

̺fv dV +

∫

̺m~ω0 dV +

∫

σuEM dV.

(4.21)

The left hand side is the rate of energy increase of the examined part of the medium.
The integrals on the right hand side have the following meaning: The first is the
heat flux from the surrounding; the second is the power of the forces acting on the
surface; the third is the power of the couple stress on the boundary; the fourth and
the fifth are the powers of the body force and torque; and the last term is the heat
supply from the (electromagnetic) field.

In the formula (4.21) the symbol ~ω0 stands for the angular velocity. Its inter-
pretation, however, can be ambiguous in particular models. The definition of the
angular velocity, given by equation (1.47), depends on the choice of the reference
configuration, while ~ω0 is, due to the nature of the energy balance, independent
of that. In many cases it is expedient to regard the angular velocity with respect
to the present configuration as ~ω0, i.e. ~ω0 = 1

2 rotv, which is also consistent to
equation (1.50). In other cases the interpretation may be different.

Further details are omitted here, as we wish to call attention only to the fact
that — in spite of its considerable generality — the expression (4.21) cannot be
regarded as universal. On the one hand, the interpretation of the quantities figuring
therein may raise problems; on the other hand, the splitting of the energy present
at a locus into parts corresponding to material and field may also cause confusion,
as it is not entirely free of arbitrariness. Despite all these, equation (4.21) can be
regarded valid — without reservation — to the models occurring in the practice of
continuum mechanics and thermodynamics.

Applying Gauss’ theorem to (4.21) and changing over to the differential form,
the balance of the total energy is obtained:

̺
dε

dt
+ div(Jq − vt − ~ω0Π) = ̺fv + ̺m~ω0 + σuEM . (4.22)

Since the total energy of the medium — with no potential energy involved — de-
pends not only on the properties of the substance but also on the frame of reference,
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the use of this quantity can be inconvenient in thermodynamic considerations. To
avoid this inconvenience, the idea, — or rather the concept — of internal energy is
introduced, viz. the value of the energy in a frame moving (i.e. both translating and
rotating) together with the substance. The total energy is the sum of the internal
and kinetic energy. Thus, the specific internal energy can be given as

u = ε − 1

2
v2 − εi

rot, (4.23)

where εi
rot is the rotational energy accompanying to the internal moment of mo-

mentum.
The internal energy — as we have seen — is frame independent, that is a so-called

objective quantity. Now, using equations (4.23), (4.22) and (4.20) the balance of
the internal energy is obtained:

̺
du

dt
+

dεi
rot

dt
+ div(Jq − ~ω0Π) = ̺m~ω0 + σuEM + t : Gradv. (4.24)

Henceforth, we shall omit internal rotation, viz. only those substances will be
considered in which the internal moment of momentum, the rotational energy and
the torque of inertial forces are each zero. By this assumption, the balance of the
internal moment of momentum reduces to

2w(t) + Div Π + ̺m = 0. (4.25)

(Here equation (4.19) was also applied.) Now the internal energy balance can be
put into the form

̺
du

dt
+ divJq = σuEM + t

s : (Gradv)s + div(~ωbΠ) + ̺m~ωb + Π : Grad ~ω (4.26)

In the transformation, beside the use of the identities

w(ω) = ~ω, t
a : ω = 2w(t)~ω, and Gradv = (Gradv)s + ω

the notation ~ωb = ~ω0 − ~ω was introduced. Here t
a denotes the antisymmetric part

of Cauchy’s stress, while t
s stands for the symmetric part.

The calculation of the thermic effect of the electromagnetic field demands the
energy balance of the electromagnetic field. It will be formulated here in the local
form. We start from the form (2.30) of the Maxwell equations. Taking the scalar
product of the first equation with µ0B and the third equation with E, then adding
the left hand side to the left hand side and the right hand side to the right hand
side, we get

1

µ0
B rotE+

1

µ0
BḂ− 1

µ0
E rotB = −E(j+̺ev)−ε0EĖ−EṖ−E rotM+E rot(v×P).

The application of some vectoranalytical identities and the repeated use of (2.30)
leads to

∂

∂t

(

1

2
ε0E

2 +
1

2µ0
B2 − BM

)

+ div

(

E × 1

µ0
B − E × M − P(Ev) − v(MB)

)

+

+

(

j + ̺
dp

dt

)

(E + v × P) + ̺
dpm

dt
B + ̺fEMv = 0. (4.27)
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Here the ponderomotive force density, defined in (2.40), and the pm = 1
̺
M

specific magnetic momentum were introduced. Equation (4.27) is regarded as the
energy balance of the electromagnetic field. Thence we read the energy density of
the electromagnetic field as

wEM =
1

2
ε0E

2 +
1

2µ0
B2 − BM. (4.28)

This, beyond quantities characterizing the field, contains the magnetization of the
medium. This fact at first seems strange — namely that the energy of the magnetic
dipole can change even if the dipole is unchanged and only the field is altered — it
claims the introduction of the potential energy of the magnetic dipole. This energy,
according to the above concepts, is a part of the field energy. These considerations
need not be transferred to the electric dipole.

The current density of the electromagnetic field energy, read from (4.27), is

S =
1

µ0
E × B − E × M + P(Ev) − v(MB). (4.29)

The power supply from the electromagnetic field to the medium, again from (4.27),
is

σuEM + ~ω̺m + ̺vfEM =

(

j + ̺
dp

dt

)

(E + v × B) + ̺
dpm

dt
B + ̺vfEM . (4.30)

From this expression the heat supply from the electromagnetic field is calculated
using (2.40):

σuEM =
[

j + ̺(̊p − ~ωb × p)
]

(E + v × B) + ̺(̊pm − ~ωb × pm)B. (4.31)

The quantities

p̊ =
dp

dt
− ~ω × p and p̊m =

dpm

dt
− ~ω × pm

are the time derivatives of the specific electric and magnetic momenta, taken in a
frame moving (translating and rotating) together with the examined element of the
medium.

The internal energy production density, according to (4.25) and (4.31) is given
as

σu = (j + ̺̊p)(E + v × B) + ̺̊pmB + t
s : (Gradv)s + div(~ωbΠ). (4.32)

In the derivation of this formula, a further hypothesis was involved, viz. the specific
torque is entirely of electromagnetic origin.
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4.3. Entropy balance.

The balance equation of the entropy plays a fundamental role in non-equilibrium
thermodynamics, providing the means to the direct application of the second law.
The construction of the balance starts from the actual form of the entropy function.
Let the local equilibrium state variables be chosen so that their values change only in
a system interacting with its environment. This requirement can easily be satisfied,
since such is the situation in classical thermodynamics. Thus, for example a rather
wide field of application is assured by choosing the set of equilibrium state variables
as

{u, d,p,pm}. (4.33)

Here u is the specific internal energy, d the tensor measuring deformation, p the
specific electric and pm the specific magnetic polarization.

The description of non-equilibrium states requires further variables. Let us de-
note these by ξi, and, for some time, let us not be concerned with their explicit
physical meaning. The specific entropy is given as a function of the state variables.
Of course, the form of the function alters from medium to medium, from model
to model. The choice of the state variables in the mentioned way assures that if a
sufficiently small part of the medium is isolated with respect to energy transfer —
that is to say it is surrounded by rigid, adiabatic, apermeable walls and the electro-
magnetic fields (if present) are controlled so that the field changes no energy with
the medium element — then the equilibrium state variables remain unchanged de-
spite any process taking place therein. (The inverse of this statement is not always
true.)

In other words, the equilibrium state variables alone — regardless of the values
of the dynamic variables ξi — determine the equilibrium state that a small part of
the medium would reach after it was isolated from its surrounding. It means, at the
same time, that even the equilibrium values of the dynamic variables are uniquely
determined by the equilibrium state variables. Thus it is possible to choose dynamic
variables having zero value in local equilibrium and, of course, in global equilibrium,
too. By the suitable choice of the dynamic variables, it can always be assured that
the form of the non-equilibrium entropy function would be

s = s0(u, d,p,pm) −
∑

i

1

2
ξ2
i . (4.34)

Here s0(s,d,p,pm) is the equilibrium entropy function [22, 111].
Next we determine the actual form of the entropy balance. The required balance

equation should conform to the general pattern:

̺
ds

dt
+ div Js = σs. (4.35)

First the value of ̺ds
dt

is calculated from equation (4.34):

σs − div Js = ̺
ds

dt
= ̺

∂s0

∂u

du

dt
+ ̺

∂s0

∂d
: d̊ + ̺

∂s0

∂p
p̊ + ̺

∂s0

∂pm

p̊m − ̺
∑

i

ξiξ̊i. (4.36)
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This formula calls for a few comments:
First, the time derivatives need some explanation. These can be taken in any

rotating frame, but since there are vectors and even tensors among the state vari-
ables their time derivatives shall describe objective material processes only if they
are taken in a moving frame — viz. translating and rotating — together with the
material point.

The second comment concerns the partial derivatives of the entropy functions
with respect to tensor and vector variables. These are defined by the formulae

d

dx
s0(u, d + xZ,p,pm)

∣

∣

∣

∣

x=0

=
∂s0

∂d
: Z

d

dx
s0(u, d,p + xz,pm)

∣

∣

∣

∣

x=0

=
∂s0

∂p
z (4.37)

d

dx
s0(u, d,p,pm + xz)

∣

∣

∣

∣

x=0

=
∂s0

∂pm

z

in which Z is an arbitrary symmetric tensor, and z is an arbitrary vector.
Thirdly, the derivative du

dt
is connected to the quantities characterizing the rate

of the processes through the corresponding balances. Making use of these, instead
of formula (4.36), the formula

σs − div Js =
∂s0

∂u
(σu − div Jq) + ̺

∂s0

∂d
: d̊ + ̺

∂s0

∂p
p̊ + ̺

∂s0

∂pm

p̊m − ̺
∑

i

ξiξ̊i =

= −div

(

∂s0

∂u
Jq

)

+ Jq grad
∂s0

∂u
+

[

∂s0

∂u

1

2
(d−1

t
s + t

s
d
−1) + ̺

∂s0

∂d

]

: d̊+

+
∂s0

∂u
[div(~ωbΠ) + Π : Grad ~ω] +

∂s0

∂u
j(E + v × B)+

+ ̺

[

∂s0

∂u
(E + v × B) +

∂s0

∂p

]

p̊ + ̺

[

∂s0

∂u
B +

∂s0

∂pm

]

p̊m − ̺
∑

i

ξiξ̊i

(4.38)

is obtained.
The last step is the separation of the entropy production from the divergence of

the entropy current. This proves an easy task if we remember that the entropy is a
continuous function of the state variables, which are also assumed to depend contin-
uously on the space coordinates. On the one hand, it is evident that the transport
of extensive quantities corresponding to the state variables is accompanied by an
entropy transport; while, on the other hand, this current of the extensive variable,
flowing through an imaginary surface, cannot directly cause entropy production.
Hence it is concluded that the entropy current density can be constructed as a lin-
ear combination of the current densities of the state variables. The coefficients of
the linear combination are the partial derivatives of the entropy with respect to the
corresponding state variables. So, if we assume that only the internal energy has
transport while the other state variables, like electric and magnetic polarization,
and the dynamic variables have not, then the entropy current density is given by
the formula

Js =
∂s0

∂u
Jq. (4.39)
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Since only the equilibrium entropy function is present here, the partial derivative
is identified with the help of Gibbs’ relation:

∂s0

∂u
=

1

T
(4.40)

so

Js =
1

T
Jq (4.41)

Finally, from equation (4.38) the entropy production density is obtained:

σs = Jq grad
1

T
+

[

1

T

1

2
(d−1

t
s + t

s
d
−1) + ̺

∂s0

∂d

]

: d̊+

+
1

T
[div(~ωbΠ) + Π : Grad ~ω] +

1

T
j (E + v × B)+

+ ̺

[

1

T
(E + v × B) +

∂s0

∂p

]

p̊ + ̺

[

1

T
B +

∂s0

∂pm

]

p̊m − ̺
∑

i

ξiξ̊i.
(4.42)

It can be seen that the entropy production density is a linear combination of the
objective material processes. Arranging the “scalar” components of the material
process rates in a sequence, and denoting them by Ji, the entropy production can
be put into the general form

σs =
∑

i

XiJi (4.43)

where Xi denotes the coefficient of the process rate component in equation (4.42).
The Ji quantities are called currents (in analogy to the transport processes), while
the Xi quantities are called thermodynamic forces.

It follows from the second law that the entropy production density σs can be
zero if and only if no material process takes place. In any other case the entropy
production density is positive. This fact has far-reaching consequences concerning
the laws describing the rate of the material processes.

4.4. The linear laws.

As can be seen from equation (4.43), the entropy production density is zero in
equilibrium. (When no process takes place, then all Ji vanish.) Let us examine the
situation in the neighborhood of the equilibrium. First, consider a process in which
only one current, e.g. Jk, differs from zero. Then

σs = XkJk > 0. (4.44)

It means that when Jk is positive then the conjugate force Xk is also positive,
and when Jk is negative then Xk must be negative as well. From the continuity
of the forces in the state space, we conclude that since the Xk force changes sign
at equilibrium, its value has to be zero in equilibrium. Thus, it is declared: The
general condition of the equilibrium is that each and every force must vanish there.
This circumstance is the reason for the terminology “thermodynamic force”.
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The thermodynamic forces depend partly on the state variables and partly on
interactions with the environment. So the existence or the non existence of equi-
librium depends partly on the medium and partly on the environment it interacts
with.

On the basis of the condition of vanishing forces (with the help of (4.42)), the
physical meaning of the entropy derivatives is found. In the present approach

1

T

1

2
(d−1

t
s + t

s
d
−1) + ̺

∂s0

∂d
= 0,

1

T
(E + v × B) +

∂s0

∂p
= 0, (4.45)

1

T
B +

∂s0

∂pm

= 0

must hold in equilibrium. It means that the derivatives are related to the stress
tensor and the electric and magnetic fields, namely, in the equilibrium state defined
by the given equilibrium state variables. Thus it is convenient to introduce the
notations

∂s0

∂d
= − 1

T̺

1

2
(d−1

t
es + t

es
d
−1),

∂s0

∂p
= − 1

T
(Ee + v × Be), (4.46)

∂s0

∂pm

= − 1

T
Be,

where the upper index “e” refers to the equilibrium situation. The quantities t
e,

Ee and Be are, naturally, functions of the equilibrium state variables, which can
be determined from the thermostatic properties of the medium. (The form of the
functions may change from model to model.)

We mention that for a conducting medium in equilibrium

E + v × B = 0 (4.47)

must hold, which can be read from the fourth term on the right hand side of
(4.42). For an insulator, however, j = 0 identically, so then (4.47) need not hold in
equilibrium.

Now, turning to the laws describing dynamic behavior, it can be said that the
speed of material processes is determined on the one hand by the local and regional
properties of the material, and on the other hand, by the intensity of interactions
with the environment, in such a way that the entropy production is positive for all
processes. Consequently, the process rates and thermodynamic forces vanish simul-
taneously in equilibrium. This latter fact and, at the same time, the most general
linear dependence of independent currents on forces is expressed by Onsager’s laws
[124, 125].

Ji =
∑

k

LikXk. (4.48)
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These linear laws can be regarded as a convenient description of currents depend-
ing on state variables; from another view, they can be interpreted as the first non-
vanishing terms of a series expansion. Consequently, Onsager’s Lik conductivity
coefficients may depend on the local state variables, especially so on the temper-
ature and deformation but even on the dynamic variables. These dependencies,
however, cannot be too strong, at least not enough to have a decisive influence on
the currents. Still these dependencies cannot be entirely neglected as these account
for the different dynamic behavior of systems different in state and quality.

In the most simple cases the Lik coefficients can be taken as constants not chang-
ing during the examined process. This is called the strictly linear case. In other
cases the changes of the coefficients must be taken into account. We can distinguish
two further possibilities and two different types of corresponding theories. Their
clear separation has fundamental importance in the exact classification of the non-
linear thermodynamic theories. When the conductivity coefficients depend on the
local equilibrium state variables and further changes — e.g. dependence on ther-
modynamic forces — need not be taken into account, we can speak of quasi-linear
constitutive equations and of a quasi-linear thermodynamic theory. The terminol-
ogy “strictly non-linear” is used for constitutive equations and theory, when the
laws (4.38) explicitly do fail, i.e. the currents are strictly non-linear functions of
the forces. It is another question that even in the strictly non-linear case, the con-
stitutive equations can be put in the form of (4.38) if the dependence of the Lik

coefficients on the Xk forces is allowed.
It should be mentioned here that this classification of constitutive equations and

theories of thermodynamics into strictly linear (Lik-s are constant), quasi-linear
(Lik-s are functions of the state variables) and strictly non-linear ones (Lik-s are
functions of the forces) is due to Gyarmati. (See also references [43, 44, 46, 141,
145, 146, 149, 157, 160] where several thermodynamic problems are examined on
the basis of the classes given here.)

If the number of the independent scalar components of the currents is denoted by
f , then the system of the Lik coefficients in the linear laws (4.38) has f2 components
which, however, are not all independent of each other. The well-known relations
among them are the so-called reciprocal relations of Onsager and Casimir, which
govern the symmetry properties of the conductivity matrix. These relations in the
symmetric — Onsagerian — case read

Lik = Lki (4.49)

while, for the antisymmetric, Casimir-type case

Lik = −Lki (4.50)

holds. The question whether the first or the second relation holds in a particular
case shall be discussed in the next section.

Another requirement beyond the reciprocal relations imposed on the phenomeno-
logical coefficients is that they must be consistent with the material symmetries (see
3.3.1). The linear laws comply with the principle of material objectivity; thus this
requirement gives no further restrictions on the coefficients.
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The dynamic laws can be formulated in forms different from (4.38) by the help
of so-called representations and pictures which give mathematically equivalent for-
mulae with a shape similar to that of (4.38). The general theory of the “pictures”
was worked out and applied by Gyarmati [70] and Farkas [43] (see also [7, 46, 141,
145, 146]). Different pictures are obtained by multiplying both sides of (4.43) by
an always positive state function, G, i.e.

Gσs =
∑

j

JjXjG. (4.51)

The quantity Gσs is evidently non-negative, taking a zero value in equilibrium only.
The coefficients of the current, Jj , namely,

XG
j = XjG (4.52)

regarded as forces, and substituted in (4.48) give the linear laws in the “G-picture”:

Ji =
∑

k

1

G
LikXG

k =
∑

k

LG
ikXG

k . (4.53)

The coefficients obey the Onsager-Casimir reciprocal relations. By choosing various
functions for G, various pictures for the description of dissipative processes are
obtained [43, 70].

Naturally, even within a given picture, the currents and forces can be chosen in
several ways — from a given set of currents or by an invertible linear transforma-
tion — and another set of currents, having the same properties, can be obtained.
Consideration of reciprocal relations and of material symmetries — moreover, the
suitable choice of representation, picture and the use of the possible linear trans-
formations — often lead to the cessation of dependence on the state for the Lik

coefficients, under given circumstances. [43, 46, 70]
By the above formalism any dissipative process can be described; yet, sometimes

it is more convenient to give the dependence of currents on the state in a different
form, although this provides simpler description for that particular phenomenon
only. This is the case in Mises’ theory of plastic flow.

We shall show later that media usually regarded categorically of non-linear be-
havior, namely, the generalized newtonian systems, can be described well by linear
Onsager equations.

Substituting the linear laws (4.48) into (4.43), we get a positive definite quadratic
form for entropy production:

σs =
∑

i,k

LikXiXk, (4.54)

hence, by the help of the theory of quadratic forms several inequalities are derived
for the coefficients. The most important of them are:

Lii > 0, LiiLkk − LikLki > 0. (4.55)

Note that these inequalities are the direct consequence of the second law.
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4.5. Reciprocal relations.

Before giving the precise definition of the reciprocal relations, we have to define
time reversal. Though the concept of time reversal is usually introduced in the
statistical foundation of irreversible thermodynamics, here an entirely macroscopic
construction is presented and only for the sake of a clearer view shall the existence
of a microscopic background be referred to. The macroscopic construction of time
reversal starts off from the observation that the basic laws of classical mechanics and
electrodynamics are reversible, i.e. if they describe a process then they describe the
reversed process as well. Precisely, if the variable t, standing for time, is changed
to the variable

t′ = −t, (4.56)

while the coordinates remain unchanged, then the fundamental equations expressed
by the variable t′ will have the same form as the original equations.

For time reversal, of course, some of the physical quantities must be transformed
as well. Thus, for example, the velocity — defined in mechanics as the time deriv-
ative of the position vector — changes sign since

v =
dr

dt
, v′ =

dr

dt′
and so v′ = −v. (4.57)

Thus two groups of physical quantities are distinguished. The first group contains
those which are not altered by time reversal (e.g. the coordinates, the acceleration,
etc.): these are called α-type variables. The second group consists of the variables
changing their sign under time reversal (e.g. velocity): these are called β-type
variables.

Regarding the invariance of the fundamental equations with respect to time
reversal as a requirement, the transformation properties of physical quantities can
be worked out; i.e., we can distinguish α and β-type quantities. No contradiction
is found as long as the dynamic laws of dissipative processes — i.e. the linear laws
— are not considered. This means that the laws of mechanics, electrodynamics,
and the laws of quantum mechanics are reversible: one could say they do not tell
to which direction the time passes.

Now, let us consider the most important physical quantities, one after the other.
Due to the definition of time reversal, the space coordinates are α-type and the
velocity and the time itself are β-type variables. Acceleration is an α-type, thus
due to Newton’s second law, force and mass are also α-type variables. Following
from the invariance of the coordinates, α-type variables are the volume, the density
and the deformation tensor. Examining the form (2.30) of the Maxwell equations,
it is seen that the electric field, the charge and electric polarization are α-type,
while the magnetic field B, magnetization M, and electric current j, are β-type
variables.

From the invariance of the balance equations and the definition (4.4) of the en-
tropy it is seen that α-type variables are the energy, the body forces, the torque,
as well as Cauchy’s stress, the couple stress and, finally, the entropy. Mass current,
the heat current, the moment of momentum and angular velocity are all β-type
variables. Finally, we stress that on the basis of the entropy balance, entropy
production should be a β-type variable. In the expression (4.42) of the entropy
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production one can see in detail while in its (4.43) general form, one can see gener-
ally that from the conjugate current and force pairs one is always an α-type while
the other is a β-type quantity. By this we have reached the limits of the concept
of time reversal. For if we substitute the linear laws (4.48), into the general form
(4.43) of entropy production, then we arrive at a contradiction in any case.

Before examining this in detail, we present the precise form of the Onsager-
Casimir reciprocal relations. These can be put into the unified form

Lik = (−1)ni+nkLki, (4.58)

in which ni = 0 if Xi is an α-type, and ni = 1 if Xi is a β-type force. This means
that the (4.49) Onsager reciprocal relation holds when Xi and Xk are of the same
type (both are α or both are β-type forces), while Casimir’s reciprocal relation is
valid if the forces are of a different character (one is of α-type and the other is of
β-type). If this form of the reciprocal relations is also taken into account, then
we find that the entropy production density (4.54) (expressed by the help of the
dynamic laws) is an α-type expression, as the phenomenological coefficients are
constant in strictly linear theory and are equilibrium state functions in quasi-linear
theory since in this latter case they depend only on the equilibrium state variables.
Equilibrium is, invariant under time reversal. There are two generalizations of the
Onsager relations, well known in the literature, that are equivalent to the Onsager
relations in the linear case, while their formulation does not refer to linearity. Thus
they seem suitable for making the Onsager relation adaptable to non-linear dynamic
laws, yet an adequate way of generalization has not yet been found.

The first generalizations for the theory to strictly non-linear cases — that were
given in the years 1958-1962 [66, 67, 101] — are based on the Gyarmati-Li reciprocal
relations

∂Ji

∂Xk

=
∂Jk

∂Xi

, (4.59)

that, in the linear case, are equivalent to (4.49). These relations in non-linear cases
lead to interdependence between higher order coefficients, besides the Onsager-
Casimir relations. As we shall see later, the basic importance of the (4.59) gen-
eralized reciprocal relations is that they guarantee the existence of the dissipation
potentials (to be introduced later) both for the linear and non-linear case, which
potentials seem to be essential from the point of a general and unified theory of
thermodynamics.

The wording of the generalization by Meixner, called the principle of macroscopic
reversibility, is somewhat more complicated [150]. On the basis of linear laws (4.48)
we can say that the quantities in the expression (4.43) of the entropy production
are not all independent: For given Xi forces the Ji currents can be determined.
The set of independent variables, however, can be chosen in other ways as well.
Let us regard one of a conjugate current-force pairs as an independent variable and
the other of the pair as a dependent variable. Then, if the linear laws hold, by the
help of (4.48) the value of the dependent variables can always be determined, as
can any particular positive definite form be determined by the Lik coefficients. The
explicit expression of the dependent variable is always linear and follows always the
Onsager-Casimir relations but with the slight modification that it is not the types
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of the Xi forces but the types of the independent variables which decide the sign
of reciprocity. The principle of macroscopic reversibility states that the expression
(4.43) of the entropy production, after the substitution of the dynamic laws, shall
be invariant with respect to time inversion. So the entropy production must be
an α-type quantity, for any set of independent variables that are chosen from the
conjugate pairs.

4.6. Gyarmati’s variational principle of dissipative processes.

Like mechanics and electrodynamics, the fundamental laws of the thermody-
namics of dissipative processes can be condensed into a variational principle. This
variational principle both in its differential (local) and in integral (global) forms
was formulated by Gyarmati in 1965. This principle was applied to several fields of
irreversible processes: first of all, his colleagues (Verhás [157], Böröcz [13], Farkas
[43, 44], Sándor [141], Vincze [160], Stark [149]); but also many others (Singh [145,
147], Bhattacharya [7], Dickel [32] etc.).

Consistent application of both the local and the global forms of Gyarmati’s
principle provides all the advantages throughout the explication of the theory of
irreversible thermodynamics that are provided in the study of mechanics and elec-
trodynamics by the corresponding classical variational principles, e.g., Gauss’ dif-
ferential principle of least constraint, or Hamilton’s integral principle.

Gyarmati’s principle is based on the fact that the generalization of the dissipation
functions — that were introduced by Rayleigh and Onsager for special cases —
always exist locally in continua [104, 125, 126]. In linear theory these functions are
defined as:

Ψ(X) =
1

2

∑

i,k

LikXiXk (4.60)

and

Φ(J) =
1

2

∑

i,k

RikJiJk. (4.61)

The Rik coefficients (general resistivities) are the components of the inverse of the
conductivity matrix (Lik).

The most important property of the dissipation function is that it is a homoge-
neous quadratic function of the Xi forces in the strictly linear theory, while in the
quasi-linear theory it depends also on the state variables. The other fundamental
property of Ψ is that its partial derivative with respect to Xk is equal to the current
Jk conjugate to the force Xk in the entropy production density:

Jk =
∂Ψ

∂Xk

(4.62)

Finally, the equality of the mixed second derivatives of Ψ with respect to the forces
are equivalent to Onsager’s reciprocal relations:

∂2Ψ

∂Xi∂Xk

=
∂Ji

∂Xk

= Lik = Lki

∂Jk

∂Xi

=
∂2Ψ

∂Xk∂Xi

. (4.63)
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Because of the above properties, the function Ψ is called a dissipation potential,
more precisely: it is the flux-potential (see (4.62)).

The function Φ has similar properties. In the strictly linear theory the function
Φ is a homogeneous quadratic function of the currents J , while in the quasi-linear
case it depends also on the local state variables (through the coefficients). The
partial derivative of the function Φ with respect to Jk is equal to Xk:

Xk =
∂Φ

∂Jk

(4.64)

Due to this relation the function Φ is also a dissipation potential, more exactly: it
is the force potential.

The equality of the mixed second derivatives of Φ with respect to the J-s are
equivalent to the Onsager relations, now expressed in terms of the Rik resistances

∂2Φ

∂Ji∂Jk

=
∂Xi

∂Jk

= Rik = Rki =
∂Xk

∂Ji

=
∂2Φ

∂Jk∂Ji

(4.65)

Hence, it can be seen that the necessary and sufficient condition of the existence
of the dissipation potentials Ψ and Φ is the existence of the Onsager reciprocal
relations.

It is possible to define the weighted potentials ΨG and ΦG. Those show all the
essential properties of Ψ and Φ, but correspond to the weighted entropy production
Gσs (defined in (4.51)). Making use of equations (4.52) and (4.53), we obtain the
forms of the dissipation potentials in the general G-picture [43, 70]:

ΨG = GΨ, ΦG = GΦ. (4.66)

Finally we note another essential property of the functions Ψ and Φ; namely, that
they are invariant scalar quantities with respect to the linear transformations of
the currents and forces.

4.6.1. The local forms of Gyarmati’s principle. Gyarmati’s variational
principle of non-equilibrium thermodynamics can be derived from the properties
(4.62) and (4.64) of the functions Ψ and Φ. We mention that this derivation does
not make use of the homogeneous quadratic forms of the functions Ψ and Φ given in
(4.60) and (4.61); thus the variational principle is applicable to strictly non-linear
phenomena that cannot be described by the linear laws (4.48), yet the currents
are uniquely determined by the forces and the local variables of state. This is the
situation with all the phenomena the Gyarmati-Li generalization

∂Ji

∂Xk

=
∂Jk

∂Xi

(4.67)

of the Onsager relations corresponds to. These relations are necessary and sufficient
conditions of the existence of dissipation potentials, obeying equations (4.62) and
(4.64).

Notice, that equation (4.64) can be written in the form

∂

∂Jk

(σ − Φ) = 0, (4.68)
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where, in executing the partial differentiation, the currents must be regarded vari-
ables independent of the forces and local state variables. It means that the consti-
tutive relations given by equation (4.64) are equivalent to the following statement:
those currents correspond to a given set of forces and state variables, at which the
function

LJ = σ − Φ (4.69)

has a stationary point in the space of the currents. This form of the principle, which
stands nearest to Onsager’s principle for small fluctuations around an equilibrium
in an adiabatically closed discontinuous system, is called the flux representation of
Gyarmati’s principle [69].

The force representation of Gyarmati’s principle is obtained by putting the re-
lation (4.62) in the form

∂

∂Xk

(σ − Ψ) = 0. (4.70)

During partial differentiation the forces and the fluxes must be regarded again as
independent variables. Thus, those forces correspond to a given set of currents and
state variables at which the function

LX = σ − Ψ (4.71)

has a stationary point in the space of the forces.
It is easily seen that the functions LJ and LX in (4.69) and (4.71) can be put in

the same form, as the subtraction of function independent of the J-s from LJ has
no influence on equation (4.68). The function Ψ just fits the purpose. On the other
hand, Φ can be subtracted from LX (due to the same reasons). Now a universal
Lagrange density of Gyarmati’s principle has been obtained:

L = LJ − Ψ = LX − Φ = σ − Ψ − Φ, (4.72)

by which the extremum properties (4.68) and (4.70) can be expressed universally.
It can be said, quite generally, that if a sufficient number of the currents and

forces is known — that is either every force or every current, or even one part of
the currents and the other part of the forces — then the remaining variables must
be chosen so that the universal Lagrangian (4.72) is stationary. This is a necessary
and sufficient condition for the set of the currents and forces describe a real process.
In other words, the variation of the universal Lagrangian in Gyarmati’s principle is
zero around the real forces and fluxes, with respect to the simultaneous variation
of the currents and forces.

In the quasi-linear theory the functions Ψ and Φ depend on the state variables
through the conductivities Lik and resistivities Rik due to (4.60) and (4.61). The
matrices of the conductivities Lik and resistivities Rik are reciprocal matrices:

∑

r

LirRrk = δik. (4.73)

Let us calculate the partial derivative of the L Lagrange density with respect to a
local state variable denoted by Γ:

∂L
∂Γ

= −1

2

∑

i,k

∂Lik

∂Γ
XiXk − 1

2

∑

i,k

∂Rik

∂Γ
JiJk. (4.74)
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The partial derivatives ∂Rik/∂Γ, making use of (4.73), are expressed by the coeffi-
cients Rik and the derivatives ∂Lik/∂Γ as

∂Rik

∂Γ
= −

∑

r,s

Rir

∂Lrs

∂Γ
Rsk. (4.75)

Substituting this in (4.74) and applying the reciprocal relations, the form

∂L
∂Γ

= −1

2

∑

i,k

∂Lik

∂Γ
(Xi −

∑

s

RisJs)(Xk +
∑

s

RksJs). (4.76)

is obtained. Hence it is seen that the partial derivatives of the universal Lagrangian
with respect to the local state variables, at real processes, are zero. So the param-
eters Γ can also be varied independently.

This theorem is Gyarmati’s supplementary theorem [72], which guarantees the
validity of the universal local form of the variational principle to the quasi-linear
case, too.

The universal form of the local Gyarmati principle states, consistently with the
supplementary theorem, that the Lagrangian L = σ − Ψ − Φ has an extremum in
all points that describe a real process in the unified space of forces, currents and
state variables.

In examining the type of the extremum, instead of considering second variations,
we had better use another form of the Lagrangian which is advantageous in other
respects, as well. This form is

L = −1

2

∑

i,k

Rik(Ji −
∑

s

LisXs)(Jk −
∑

s

LksXs). (4.77)

Executing the multiplications the form (4.72) of the universal Lagrange density is
obtained again. This very form, however, clearly shows that the extremum for real
processes is always a maximum and the value of this maximum is zero; in other cases
the Lagrangian is always negative, since the Rik-s are the coefficients of a positive
definite quadratic form and the variables of this quadratic form are (Ji−

∑

s LisXs).
This form of the local principle is considerably similar to Gauss’ principle of least
constraint, so this form is often called the Gaussian form of Gyarmati’s principle.
As the value of (4.77) is zero only in the absence of local constraints, while in other
cases the value of this maximum depends on the constraints, the Gauss type local
principle is an excellent tool for introducing the notion of thermodynamic constraint
forces; consequently it is of great help in discussing problems with local constraints
(Verhás [157], Gyarmati [70], Dickel [32]).

The local Gyarmati principle of irreversible thermodynamics is of universal va-
lidity, yet its most important consequence to the fact it is regarded as the basis for
integral principles. Before the discussion of integral principles, however, the place
of the local principle in the frame-work of the theory should be examined. To this
end, the local principle is resumed more explicitly.

The essence of the local principle is that it replaces the set of linear laws by
a single scalar function. If either the function Ψ or the function Φ is known, the
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constitutive equations can be obtained by the variational principle. Actually, it is
sufficient to know only one of the dissipation potentials Ψ or Φ, since the matrix of
the coefficients can be read from one of them, and the other potential is determined
by the elements of the reciprocal matrix.. This calculation can be executed via a
more elegant method. Let us regard, for example, the function Ψ as the given one.
Then the Legendre-transformation of the function Ψ leads to the function Φ

(

∂Ψ
∂X

)

.

Putting J in the place of ∂Ψ
∂X

the function Φ is obtained. The function Ψ is got
from Φ in the same way, ([69, 72]).

The advantage of the method of Legendre transformation lies in the fact that
its formulation and application is independent of the linear or quasi-linear charac-
ter of the theory; thus it is applicable to dissipation potentials of entirely different
character. From the fact that the dissipation potentials Ψ and Φ are the Legendre
transforms of each other, it is also seen that the validity of Gyarmati’s supplemen-
tary theorem is not restricted to the quasi-linear case, but holds to any strictly
non-linear theory, subject to the Gyarmati-Li generalized reciprocal relations (and
where the higher order coefficients also depend on the variables of state). This, at
the same time, means that the Lagrangian L = σ − Ψ − Φ must be stationary at
every point of space in every instant of time in the case of any non-linear theory,
provided that dissipation potentials exist at all.

The next question is how a dissipation potential can be constructed from the
constitutive equations. The potential character of the functions Ψ and Φ is defined
by equations (4.62) and (4.64). The condition to the existence of such functions with
potential character to a given (say: empirically proven) set of constitutive equations
is that they be subjected to the Gyarmati-Li generalized reciprocal relations. It
is rather inconvenient that no general physical law, or exact proof based on such
laws, is known which would guarantee the fulfillment of the Gyarmati-Li generalized
reciprocal relations, or of other equivalent conditions, for all possible constitutive
equations. If, however, the reciprocal relations (4.67) hold in a particular case
or approximation, then the dissipation potentials can be given and the Gyarmati
principle can be applied. Dissipation potentials for non-linear cases were given first
(and independently) by Verhás [157], Edelen [35] and Presnov.

The function Ψ can be obtained as follows. Combining equations (4.43) and
(4.62) we get

σs =
∑

i

Xi

∂Ψ

∂Xi

=
∑

i

XiJi(X) = σs(X) (4.78)

for the entropy production. This expression can be regarded as a quasi-linear inho-
mogeneous partial differential equation. Its only solution subject to the condition
Ψ(0) = 0 is the function

Ψ(X) =

1
∫

0

1

t
σs(tX) dt (4.79)

A similar formula is obtained for Φ(J):

Φ(J) =

1
∫

0

1

t
σs(tJ) dt (4.80)
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The knowledge of the function Ψ or Φ defined so, is equivalent to the knowledge of
the original constitutive equations [157].

4.6.2. The governing principle of dissipative processes. Though the local
form of Gyarmati’s principle is indispensable for the description of local constraints,
an integral form of the principle is of much greater importance in practical calcula-
tions. The integral forms are obtained by the integration of the universal Lagrange
density with respect to space or space and time coordinates. The universal (global)
principle, obtained so, is called the governing principle of dissipative processes [72].

Since the universal Lagrange density is everywhere and always stationary, it is
also true that

δ

∫

V

(σ − Ψ − Φ) dV = 0, (4.81)

and

δ

t2
∫

t1

∫

V

(σ − Ψ − Φ) dV dt = 0. (4.82)

The governing principle of dissipative processes given by Gyarmati can be regarded
the most widely valid and the most widely applied integral principle of irreversible
thermodynamics. From this principle the parabolic transport equations of irre-
versible transport processes can be derived both in the linear and quasi-linear case,
as well as in all those non-linear cases where dissipation potentials can be deter-
mined by (4.79) and (4.80) due to the validity of the generalized reciprocal relations
(4.67), [35, 43, 70, 73, 141, 146, 149, 157, 160].

The application of the governing principle can be understood through the proper-
ties of the local principle. The variational principle alone does not contain sufficient
information about the system, the functional takes its absolute maximum in several
points of the (Γ, X, J) space; but if the Γ and X values are given, then J can be
determined. Obviously, not only the knowledge of Γ and X is suitable but any
other restrictive circumstance denoting an equivalent hypersurface in the (Γ, X, J)
space. Such a restrictive condition is the ensemble of the balance equations and the
definition of the forces (read from the entropy production (4.36)) together with the
equation of state.

Hence it follows that the variational principles (4.81) and (4.82) are to be un-
derstood with the above subsidiary conditions, and thus the processes occurring in
the system are uniquely described.

The extraordinary importance of the formula (4.81) arises from the fact that the
Euler-Lagrange equations are identical to the parabolic transport equations. Its use
has the greatest advantage in the entropy picture, since the substitution of Γ with
the entropy balance gives a particular form. The corresponding Euler-Lagrange
equations have a separable subsystem of differential equations (viz. independently
solvable) for the Γ parameters, and neither the consideration of the balance equa-
tions as subsidiary conditions nor the determination of the J currents is necessary
[70].
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The governing principle of dissipative processes — like any other integral princi-
ple of physics — contains information on the boundary conditions, too. They have
to be given so as the absolute maximum be provided, viz. any further weakening
of the proper boundary conditions may not increase the value of the maximum.

We mention that for strictly linear problems there are two partial forms also
valid:

δ

∫

V

(σ − Ψ) dV = 0, δJ = 0,

and

δ

∫

V

(σ − Φ) dV = 0, δX = 0.

The first of these is called force, and the second is called flux representation. Both
representations were widely applied to the solution of several practical problems.
[145, 146, 149]. It is also well known that the force representation of Gyarmati’s
governing principle is equivalent to the local potential method of Prigogine and
Glansdorff [55], while the flux representation is the equivalent of the variational
methods of Biot [8]. (For details see references [72, 145, 147].)

4.6.3. The derivation of the von Mises’ equations of plasticity. Here
we present an application of the local principle to a typical non-linear case: we
derive Mises’ theory of plastic flow (Verhás [157]). The existence of the function Φ
is assumed.

Let us consider a homogeneous, isotropic, incompressible fluid continuum in
local equilibrium and ignore heat conduction. The energy dissipation for this case
is obtained from equation (4.38) in the form

Tσs = t0 : d̊. (4.83)

It is well known that the direct application of the linear laws to this expression leads
to Newton’s viscosity law [61, 70]. Instead, choose a different procedure, assuming
the constitutive relation between the single thermodynamic force and flux non-
linear but still deducible from a Φ dissipation potential. This dissipation potential
is a scalar and isotropic function of d̊, thus

Φ = Φ(tr d̊, tr d̊
2, tr d̊

3). (4.84)

In course of isochoric motions the trace of d̊ is zero, so

Φ = Φ(tr d̊
2, tr d̊

3). (4.85)

If Φ is assumed to be a continuous function of its variables (remember that Φ = 0

at d̊ = 0 ), then, for sufficiently slow flows, we can ignore the tr d̊
3 variable, too, as

its value is small relative to tr d̊
2. The trace of d̊

3 is strictly zero for viscometric
flows. Thus the form of the potential Φ, for viscometric flows exactly and for nearly
viscometric flows approximately is

Φ = Φ(tr d̊
2). (4.86)
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Since Φ is regarded a function of d̊, let us introduce (to simplify calculations) the
notation

d̊ = λa, (4.87)

where λ is a scalar variable. The tensor a can be arbitrarily normed, which norm
now is

tr a
2 = 1. (4.88)

Thus instead of (4.86) we can use the function

Φ = Φ(λ2) = g(λ). (4.89)

It is obvious that the function g(λ) has a physical meaning, but for the positive
values of its variable; consequently, for negative λ the function g(λ) can be defined
at will. It is plausible to assume g(λ) differentiable at λ = 0. Then for a sufficiently
small value of λ, g(λ) can be approximated by its tangent, so the function

g = aλ (4.90)

can be taken. Hence, with respect to equations (4.87) and (4.88), the form

Φ = a(tr d̊
2)

1

2 (4.91)

is obtained, from which the constitutive relation

t =
2a

(tr d̊2)
1

2

d̊ (4.92)

does follow. Introducing the notation

a
√

2 = k, (4.93)

the expression

t0 =
k
√

2

(tr d̊2)
1

2

d̊ (4.94)

is obtained for the stress, which is identical to the equation (3.31) of the ideal plastic
body.

From the above results it is clear that Gyarmati’s local principle furnished with
various approximations for the potential φ leads to the various theories of viscous
flow or plasticity.

4.6.4. The generalized reciprocal relations and the generalization of

Gyarmati’s principle for non-linear cases. The possibility of generalizing the
reciprocal relations for non-linear constitutive equations has already been men-
tioned in section 4.5. dealing with the reciprocal relations and in section 4.6. de-
scribing Gyarmati’s variation principle. However, the practical value of the sugges-
tions made there is doubtful. The reason for this is that neither the macroscopic
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reversibility principle proposed by Meixner [109] nor the generalized reciprocal rela-
tions by Gyarmati and Li [66, 101] could be proved satisfactorily up to now, either
theoretically or experimentally. Moreover, it is well known that the dynamic equa-
tions equivalent to the Guldberg-Waage equations for chemical reactions, which are
regarded as prototypes of non-linear constitutive equations, definitely violate the
general reciprocal relations of Gyarmati and Li, as well as Meixner’s macroscopic
reversibility principle — at least in the case where we consider affinities the real
driving force of chemical reactions in the non-linear region far from equilibrium.
We cannot deal here with this very important problem which is at present in the
limelight of non-linear thermodynamics, but the interested reader is referred to the
literature on the subject [99].

Nevertheless, in what follows a generalization will be presented which is proved
by strict mathematics and whose validity is not restricted if we have doubly con-
tinuously differentiable constitutive equations.

Start from the bilinear form of entropy production

σs =
∑

i

JiXi, (4.95)

but let us drop our usual notation, viz. that Ji stands for “current” and Xi for
“force” of the process rate. Let Xi be the independent variable from among the
canonically conjugate force and current and Ji the other variable characteristic
for the i-th process. The independent variables should be chosen so that close
to equilibrium — i.e. in the range of validity of the linear laws — only Onsager’s
reciprocal relations should hold. We do not suppose the linearity of the constitutive
equations, but require that they be doubly continuously differentiable with respect
to Xi-s. The role of equilibrium state parameters is not restricted in the constitutive
equations. For them, it may be written in a general way that

Ji = Ji(X1, X2, . . .Γ1, Γ2, . . . ), (4.96)

where X1, X2, . . . are the independent variables selected from the expression of
entropy production. For brevity, let us now call them forces — Γ1, Γ2, . . . are
other local state parameters whose determination is not necessary at present. Let
us then take function

Ji = Ji(λX1, λX2, . . . ) (4.97)

depending on λ and expand it into a Taylor series with respect to the powers of λ
and stop after the linear term. On writing also the remainder, expression

Ji =
∑

k

∂Ji

∂Xk

∣

∣

∣

∣

∣

0

Xkλ +
1

2

∑

k,j

∂2Ji

∂Xk∂Xj

∣

∣

∣

∣

∣

∣

ξX1,ξX2,...

XkXjλ
2 (4.98)

results, which at λ = 1, gives again constitutive equation (4.96). If the remainder is
negligible, equation (4.98) is identical with Onsager’s linear laws and the derivatives
included in it may be identified with the Onsager coefficients:

∂Ji

∂Xk

∣

∣

∣

∣

0

= L0
ik = L0

ki =
∂Jk

∂Xi

∣

∣

∣

∣

0

. (4.99)
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We note that reciprocal relations do not follow from the expression; their validity
has been taken from the linear theory. Now, for brevity, we introduce coefficients

lijk =
1

2

∂2Ji

∂Xk∂Xj

∣

∣

∣

∣

ξX1,ξX2,...

(4.100)

Following from the nature of the Taylor series, derivatives should be taken at ξX1,
ξX2, . . . where ξ lies between 0 and 1 and whose actual value is determined by the
structure of constitutive equation (4.96) and the actual values of the independent
variables. (If more than one ξ is possible, the smallest should be chosen.) Now the
constitutive equations may be written in form

Ji =
∑

k

L0
ikXk +

∑

j,k

lijk(Xr)XjXk (4.101)

where coefficients lijk may also depend on X; but on the basis of equation (4.100),
correlations

lijk = likj (4.102)

hold between them. Let us now introduce coefficients

Lik = L0
ik +

∑

j

(lijk + lkji − ljik)Xj (4.103)

for which, on the one hand, Onsager’s reciprocal relations of the linear theory are
valid and, on the other hand, as a consequence of equation (4.102) generalized
reciprocal relations

Lik = Lki (4.104)

hold. By using them, the constitutive equations may be written as

Ji =
∑

k

LikXk =
∑

k

L0
ikXk +

∑

j,k

lijkXjXk +
∑

j,k

(lkji − ljik)XjXk (4.105)

Since the last term on the right hand side is zero, equations (4.101) are obtained
again.

Our results can be summarized as follows. The constitutive equations, also for
non-linear cases, may be written in the form

Ji =
∑

k

LikXk (4.106)

where coefficients Lik may depend also on X, and between conductivity coefficients
reciprocal relations

Lik = Lki

hold if they are valid in the linear limiting case, i.e. close to equilibrium.
The selection of independent variables can be varied by a linear transformation

of forces and currents which is formally analogous to that applied in the linear
theory. This means that in the equation with the changed independent variables,
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Casimir-type reciprocal relations also appear, similar to the linear theory. Of course,
from the viewpoint of the validity of the generalized Onsager-Casimir reciprocal
relations between coefficients Lik, it is of no importance what the independent
variables of the coefficients are. Since the determinant of the matrix constructed
from coefficients Lik is positive at equilibrium, the constitutive equations are doubly
continuously differentiable and thus the above determinant is a continuous function
of the independent variables. From this it follows that the matrix constructed from
coefficients Lik can be inverted in a wider range around equilibrium than the realm
of linear laws. A similar consideration is applied for the principal minors of matrix
Lik; hence the homogeneous quadratic form using coefficients Lik remains positive
definite.

The above generalization of Onsager’s reciprocal relations permits the writing
of the Lagrange function belonging to Gyarmati’s principle provided by equation
(4.77) in its usual form as

L = −1

2

∑

i,k

Rik

(

Ji −
∑

s

LisXs

)(

Jk −
∑

s

LksXs

)

(4.107)

where numbers Rik again mean the elements of the reciprocal matrix. Since the
homogeneous quadratic form constructed with coefficients Lik is positive definite
— and, consequently, also that formed by coefficients Rik — the Lagrange function
L is always negative if constitutive equations (4.106) are not satisfied. If they are
satisfied, L is zero. This means, at the same time, that in the case of X and J values
corresponding to the real process, L is maximum — even an absolute maximum.

The Lagrange function can be reduced to its well-known simpler form by remov-
ing the parentheses:

L =
∑

i

JiXi −
1

2

∑

i,k

LikXiXk − 1

2

∑

i,k

RikJiJk = σ − Ψ − Φ. (4.108)

From this expression dissipation potentials may be determined as

Ψ =
1

2

∑

i,k

Lik(X)XiXk, Φ =
1

2

∑

i,k

Rik(X)JiJk. (4.109)

It is very important and striking that relative to the linear theory the only change
is that dissipation potential Ψ is not a quadratic function of X-s any more and
potential Φ also depends on X-s. However, a significant difference is that although
equality

∂Φ

∂Ji

=
∑

k

Rik(X)Jk = Xi (4.110)

holds also here, partial derivative

∂Ψ

∂Xi

=
∑

i

LikXk +
1

2

∑

i,k

∂Ljk

∂Xi

XjXk 6= Ji (4.111)

does not give the currents, since in this non-linear theory Ψ cannot be regarded as
a potential. It should also be noted that the problem of these derivatives becomes
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even more complicated if X-s are not chosen as independent variables in the con-
duction coefficients, but this does not interfere with the validity of the variational
principle.

The unchanged validity of the local form of Gyarmati’s principle in non-linear
cases and the existence of an absolute maximum allows the integration of the local
form with respect to time and space. Therefore we can say that the validity of
the governing principle of dissipative processes whose basis is the integrated form
of equation (4.108) with respect to space and time is not restricted to linear ther-
modynamics, but it is almost general since the requirement of its being doubly
continuously differentiable is not a strong restriction from a physical point of view.

Recently a new variational principle was proposed [52, 53, 105] that gives the
transport equations as Euler-Lagrange equations for the potential functions intro-
duced. Nýıri showed out [122] that a particular form of Gyarmati’s variational
principle is valid even if the constitutive equations are non-linear and no reciprocal
relation holds in the linear approximation.

4.7. The wave approach of thermodynamics.

One of the newest generalizations of so-called classical irreversible thermodynam-
ics based on the hypothesis of local equilibrium is the wave approach, which (apart
from some ad hoc and special cases (Cattaneo, Vernotte)) has been elaborated in
its most complete form strictly on the basis of Onsager’s theory by Gyarmati in
1977 [74]. The comprehensive practical applicability of this theory for tempera-
ture waves originating in solid bodies has been pointed out by Fekete [46], whereas
its application and further development for diffusion, thermodiffusion and other
phenomena has been credited to Bhattacharya [7].

The starting point of the wave approach is the recognition that the current
densities of transport processes have inertia; thus part of the internal energy of the
medium is a “kinetic” energy ascribable to these processes. In such cases the entropy
of the medium is not a function exclusively of local equilibrium state parameters,
but also includes an additive term depending in a homogeneous quadratic manner
on current densities describing the rate of the processes. The main features of the
method will be demonstrated on the example of heat conduction in solid bodies,
but it must be emphasized that the procedure can be applied for any transport
process. Even the simultaneous presence of several transport processes does not
exclude its applicability, since Gyarmati’s wave theory of thermodynamics is, in
fact, the direct and consequent generalization of the theory elaborated by Onsager
and Machlup in 1951 for adiabatically closed systems with a “kinetic” energy for
non-equilibrium continua [104, 126].

Consider a solid body whose mechanical motion is, for simplicity, negligible and
in which heat conduction is the only transport process. The specific entropy of the
medium, according to the above, is then

s = s0(u) − 1

2
mJ2

q (4.112)

where s0(u) is the equilibrium entropy function and m a material constant charac-
teristic for the inertia of heat current density. The actual form of entropy balance
is now
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σs = ̺ṡ + div

(

1

T
Jq

)

= ̺
1

T

(

u̇ − mJqJ̇q

)

+
1

T
div Jq + Jq grad

1

T
(4.113)

By utilizing the balance equation of internal energy

̺u̇ + div Jq = 0, (4.114)

we have for entropy production

σs = Jq

(

−mJ̇q + grad
1

T

)

= JqXq (4.115)

whence it is apparent that the force Xq adjoint to thermodynamic current Jq is

Xq = grad
1

T
− mJ̇q = X0

q + Yq (4.116)

which now consists of two parts: the classical force belonging to heat conduction
X0

q and force Yq = −mJq belonging to the non-equilibrium state. This leads to
the extension of the classical theory into the wave theory.

Until now, we have used the entropy picture, expedient for the discussion of
the general theory, for providing the basic equation of temperature waves in solid
bodies; it is, however, more appropriate to use the so-called Fourier picture, which
was first elaborated for the wave theory by Fekete [46]. In this picture, instead of
equation (4.115), we may write

T 2σs = −Jq(m
∗∗J̇q + gradT ) = JqX

∗∗

q (4.117)

where we introduced the general force X∗∗

q and the material coefficient m∗∗ =

T 2m from the Fourier picture. The constitutive equation of the process in linear
approximation and according to the Fourier picture is

Jq = λX∗∗

q = −λ(m∗∗J̇q + gradT ). (4.118)

We obtain a clearer formula if we introduce the characteristic relaxation time τ =
λm∗∗, by use of which equation (4.118) transforms into the alternative form

τ J̇q + Jq = −λ gradT (4.119)

The transport equation may be obtained by comparing equations (4.119) and
(4.114):

̺c(τ T̈ + Ṫ ) = div(λ gradT ) (4.120)

This differential equation of hyperbolic type is analogous to Kelvin’s telegraph
equation which, at low frequencies, (τ T̈ is negligible as compared to Ṫ ), leads

to the parabolic Fourier equation; whereas at high frequencies (Ṫ is negligible as

compared to τ T̈ ), it transforms into the classical undamped wave equation.
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An interesting feature of equation (4.120) is that it provides a maximum for the
propagation velocity of temperature perturbation.

v ≤
√

λ

ρcτ
(4.121)

It is easy to see that the thermodynamic consideration outlined eliminates the con-
tradiction existing between the classical Fourier equation and the finite propagation
velocity required by the special theory of relativity.

This simple variant of the wave approach is easily identifiable with heat radiation
in semitransparent media if the other ways of heat transport are negligible and the
heat capacity of the medium is small. This is the case, for example,with nocturnal
heat radiation through a wet atmosphere.

Let us consider here only a one-dimensional problem in which heat radiation
passes through an absorbing medium upwards and downwards (Figure 4.1.). As-
sume further that the medium immediately radiates back the absorbed energy due
to the isotropy of the medium, half of it upwards and the other half downwards.
Let us write the balance equations for both components of the radiation in the
case of a very thin layer with a thickness of ∆x, where x is the coordinate pointing
upwards:

Ju

(

x + ∆x, t +
∆x

v

)

= Ju(x, t) − a∆xJu +
e

2
∆x

Jd

(

x, t +
δx

v

)

= Jd(x + ∆x, t) − a∆xJd +
e

2
∆x,

(4.122)

where Ju is the heat current density upward,
Jd the same in the downward,
a the absorption coefficient, and
e the emission density.

The first equation expresses that upward radiation Ju decreases by a∆xJu while
passing through the distance ∆x in a time of ∆x

v
due to the absorption in the

medium, whereas it increases by e
2∆x owing to back-radiation. The second equation

may be interpreted in the same sense. The condition that the medium radiates back
the absorbed radiation immediately is reflected by equation

e = a(Ju + Jd). (4.123)

On rearranging both equations, dividing them by ∆x and letting ∆x → 0, we
obtain

∂Ju

∂x
+

1

v
J̇u = −aJu +

e

2
,

−∂Jd

∂x
+

1

v
J̇d = −aJd +

e

2
.

(4.124)

Let us introduce notations now

u =
1

v
(Ju + Jd), J = Ju − Jd (4.125)

with which, considering also equation (4.123) from equation (4.124), we arrive at

u̇ +
∂J

∂x
= 0,

1

av
J̇ + J = −v

a

∂u

∂x
. (4.126)
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c
)
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Figure 4.1

The first equation is identical with the balance equation of energy, since J is the
resultant heat current density and u is the energy density according to the electro-
magnetic theory of radiation. If we now take into account that on the basis of the
Stefan-Boltzmann law, the energy density of heat radiation is proportional to the
fourth power of temperature, the second equation may be transformed into

τ J̇ + J = −λ
∂T

∂x
(4.127)

where quantities

τ =
1

av
, λ =

v

a

∂u

∂T
(4.128)

have been introduced. Equation (4.127) is obviously the one-dimensional variant
of constitutive equation (4.119).

We shall now show that Gyarmati’s wave approach of thermodynamics may
also be interpreted as a special case of the theory based on dynamic degrees of
freedom elaborated in Chapter 4 of this book and applied for numerous rheological
phenomena in later sections. For this, consider a medium whose only equilibrium
state parameter is the specific internal energy and suppose that the non-equilibrium
state of this medium can be characterized by a single β-type vectorial dynamic
variable. The actual form of entropy is now

s = s0(u) − 1

2
~β2 (4.129)

whereas entropy production is

σs = Jq grad
1

T
− ~β ~̇β. (4.130)

When thinking in terms of the Fourier picture, we obtain

T 2σs = −Jq gradT − T ~β T ~̇β. (4.131)
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On writing Onsager’s laws with currents Jq and T ~̇β, we arrive at linear equation

− gradT = R11Jq + R12T ~̇β,

−T ~β = R21Jq + R22T ~̇β
(4.132)

for whose coefficients now Casimir’s reciprocal relations hold: R12 = −R21. Obvi-
ously, in our case relations

R11 > 0, R22 > 0, R11R22 + R2
12 > 0 (4.133)

should be satisfied, which express the law of entropy increase. The latter relations
do not exclude the limiting case R22 = 0. In this case, from equations (4.132) the
dynamic variable may easily be eliminated:

− gradT = R11Jq + R2
12J̇q. (4.134)

On introducing quantities

τ =
R2

12

R11
and λ =

1

R11
(4.135)

we may establish that the linear constitutive equation (4.134) of our theory based
on the introduction of the new degrees of freedom transforms into the constitutive
equation (4.119) of Gyarmati’s wave approach.

Thus we can summarize our result that the wave approach of Gyarmati may be
regarded as a special case of our theory based on the use of the dynamic degrees of
freedom. The reason is that in this case, the dynamic variables are identical with
the current densities of transport processes — except for a linear transformation
— as is readily seen from the comparison of equations (4.112), (4.115) and (4.129),
and (4.130).

4.8. Transport of dynamic degrees of freedom.

Throughout this book, we assume that the expression for the current density of
the entropy Js, is identical with the expression valid for local equilibrium, which
(in the simultaneous presence of heat conduction and diffusion) is

Js =
1

T
Jq −

∑

i

µi

T
Ji. (4.136)

Outside local equilibrium, the unanimity of the coefficients of current densities is
ensured by the canonical choice of dynamic variables; then

1

T
=

∂s

∂u
=

∂s0

∂u
,

µi

T
=

∂s

∂ci

=
∂s0

∂ci

(4.137)

This assumption — i.e. to postulate the validity of equation (4.136) — is, however,
quite arbitrary, and its correctness is proved merely by the practical applicability
of the relationships derived from it.
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In what follows, we shall examine the consequences resulting from the rejection
of this hypothesis. For simplicity the model of heat conduction in solid bodies will
be used again for this purpose; however, it should be emphasized that this is only in
order to simplify the calculations and considerations and that there is no difficulty
in the simultaneous consideration of various transport processes in a completely
general manner.

Let us take a solid body with specific internal energy as the only equilibrium
state parameter, but in which the processes are to be characterized by dynamic
variables. Then entropy may be given by

s = s0(u) − 1

2

∑

i

ξ2
i . (4.138)

In the general form of the entropy balance given by

̺ṡ + div Js = σs, (4.139)

Js may now differ from the usual form Js = 1
T
Jq and be

Js =
1

T
Jq + K, (4.140)

where vector K expresses the deviation from the formula valid in local equilibrium.
Equation (4.140) may even be regarded as the definition for K.

K is obviously zero in all cases when the medium is in local equilibrium; hence,
we can say that K is a function of its variables whose value is zero if all the dynamic
variables disappear. Based on this, K may be defined in the form

K = −
∑

i

Jiξi (4.141)

where quantities Ji depend on the same variables as vector K and they are contin-
uous if K is continuously differentiable. Dynamic coordinates ξi are treated here
as if they were scalar quantities, but they can also be components of tensors of dif-
ferent orders. Entropy production can be obtained in the usual way by comparing
equations (4.138), (4.139), (4.140) and (4.140):

σs = ̺

(

1

T
u̇ −

∑

i

ξiξ̇i

)

+
1

T
div Jq + Jq grad

1

T
− Ji grad ξi − ξi div Ji. (4.142)

Let us now utilize the balance equation of internal energy given by equation (4.114)
and rearrange the equation into the form

σs = Jq grad
1

T
−

∑

i

Ji grad ξi −
∑

i

ξi(̺ξ̇i + div Ji). (4.143)

We will not write the linear laws although they are very important for applications.
For the interpretation of the result derived, let us introduce correlation

̺ξ̇i + div Ji = σξi (4.144)



76 IV. NON-EQUILIBRIUM THERMODYNAMICS

which is actually the balance equation of a certain extensive quantity. If this ex-
tensive quantity Ξi is defined in the usual way as

Ξi =

∫

V

̺ξi dV (4.145)

then it is obvious that vector Ji can be interpreted as the current density of the
transport of extensive quantity Ξi. The form of entropy current density (4.140) is
written as

Js =
∂s

∂u
Jq +

∑

i

∂s

∂ξi

Ji (4.146)

which may be considered the natural generalization of classical equation (4.136).
Constitutive equations describing transport and source densities can be determined
on the basis of the actual expression of entropy production (in linear theories, based
on the forms of Onsager’s linear laws; in non-linear theories, according to those
corresponding to the former).

All this proves unambiguously that the formalism of irreversible thermodynamics
elaborated by Onsager does not fail for systems outside local equilibrium either.
On the other hand, it is also important that Onsager’s works do not contain any
explicit restrictions for the selection of the system of state parameters; thus it can
be correctly stated that the possibility for introducing dynamic variables is a priori
given in them.

4.9. Correlation between rational, entropy-less,

extended and Onsager’s thermodynamics.

The rapid development of non-equilibrium thermodynamics which started in
recent decades is still in progress and has produced a multitude of methods and
theories. Though the theories in question use different methods, their common
feature is that they are based on the main principles of thermodynamics and concern
the irreversible processes taking place in nature.

In what follows, we attempt to outline the differences and correlations between
these various approaches. Six more or less fundamental features are selected as the
basis of comparison:

1. Which method is used for the determination of the momentary properties
of a thermodynamic system?

2. What is its attitude towards non-equilibrium entropy?
3. How does it interpret entropy current?
4. How does it interpret entropy supply?
5. Does it consider the Onsager-Casimir reciprocal relations valid?
6. Does it use linear or non-linear constitutive equations?

For comparison, a continuum will always be considered and a sufficiently small
(infinitesimal) part of it will be called a thermodynamic system.

All modern thermodynamic theories are motivated by thermostatics; however,
the departure from equilibrium is a source of significant differences.

When classifying thermodynamic theories, special emphasis should be placed on
traditional, often called classical irreversible thermodynamics. Its basic principles
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and linear constitutive equations, together with the Onsager-Casimir reciprocal re-
lations, have been experimentally proved in a wide range. The application range of
the full theory is comparable with that of various fundamental disciplines of physics
and chemistry, and even surpasses many of them, but it is still closely related to
thermostatics. However, this theory deals only with systems not too far from
equilibrium; thus, it can circumvent the difficulties of defining the non-equilibrium
thermodynamic quantities by accepting the hypothesis of local equilibrium. This
means, at the same time, that the local values of equilibrium state parameters de-
termine the local properties of the thermodynamic system; entropy exists, which
depends on the same variables in the same way as it does in equilibrium. Entropy
current — except for diffusion — equals the ratio of heat current and tempera-
ture; constitutive equations are linear. More precisely, only Onsager’s theory op-
erating with linear approximation may be considered a unified and experimentally
proved theory. The most significant results in the field — theoretical elaboration
and the practical application of traditional irreversible thermodynamics — have
been achieved by Eckart [34], Meixner [109, 110], Prigogine, de Groot [59, 61] and
Gyarmati [65-74].

The original works of Onsager [124-126] are deliberately omitted since they go
significantly beyond the limits of local equilibrium. Onsager used the hypothesis of
local equilibrium as one, but not the only method for circumventing the difficulties.
For accuracy it should be noted that Onsager elaborated the general theory only
for adiabatically closed, non-continuous systems; i.e., he did not deal explicitly with
the thermodynamics of continua based on the general and exact basic principles of
classical field theories. Therefore, in his basic works, he did not even postulate the
validity of local equilibrium, at least not in a definite way. On the other hand, it
is also true that the authors cited above while elaborating the irreversible thermo-
dynamics of continua, also transgressed the frames of local equilibrium; moreover,
Gyarmati’s wave approach is definitely based on the existence of the locally non-
equilibrium entropy function [74].

In the course of the growing widespread application of irreversible thermody-
namics, the framework set by local equilibrium proved to be too tight. A demand
arose for the description of thermodynamic systems which are no longer charac-
terized by the fields of traditional local state parameters, because even they are
locally non-equilibrium in nature. There are two possibilities for the description
of non-equilibrium states. One of them, which is used in this book, is based on
the introduction of further variables (dynamic degrees of freedom). The modern
theories using this approach are collectively called classical or extended irreversible
thermodynamics [83, 112, 113].

Choosing another way to describe theories differing a priori from the basic prin-
ciples and methods of the axiom-system which Onsager’s thermodynamics accepted
(used and in every respect proved) are usually called “rational thermodynamics”
[80, 152]. The basis of the method of rational thermodynamics is that the momen-
tary properties of the thermodynamic system (a small enough cell of the medium)
are determined by its interaction with its environment. Thus only the values of a
few parameters describing this interaction have to be taken into account; however,
not only in the given moment but also at any time prior to the actual moment.
The role of state parameters is played by the functions providing these parameters,
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and thus the constitutive equations (the determination of which for certain general
classes of materials exclusively theoretically and “rationally” is the main goal of
“rational thermodynamics”) become functionals. The efficiency of this method is
illustrated to a certain extent by sections 3.3., 3.4. and 3.5.

The methods used in “extended irreversible thermodynamics” and “rational ther-
modynamics” are at first sight completely different. However, a deeper analy-
sis shows that the differences are rather methodological than essential in nature.
Namely, the two approaches become equivalent if we allow for infinite series of
dynamic degrees of freedom for the characterization of non-equilibrium states in
the extended theory. This equivalence can be best proved if Euclidean metrics is
introduced in the field of functions representing the independent variables in the
constitutive functionals of rational thermodynamics. In this case, the field of the
above functions becomes a separable Hilbert space whose isomorphism with the l2

space proves the equivalence of “extended irreversible thermodynamics” and “ra-
tional thermodynamics”. Not even the obviously superfluous combination of the
two types of theory is missing from the literature [25].

With respect to the views on non-equilibrium entropy, the theories may be classi-
fied in four groups. We mention first the “entropy-less” thermodynamics (Meixner)
according to which non-equilibrium entropy cannot be defined, at least unambigu-
ously. In this case, entropy production cannot be interpreted either, and its pos-
itive character is replaced by Meixner’s fundamental inequality. The relationship
between “entropy-less” thermodynamics and the method used in this book may be
illustrated as follows. On substituting div Jq into the equation of entropy produc-
tion

σs = div
Jq

T
+ ̺ṡ = Jq grad

1

T
+

1

T
div Jq + ̺ṡ0 −

∑

i

̺ξiξ̇i (4.147)

from the balance equation of internal energy

̺u̇ + div Jq = σu (4.148)

we obtain for entropy production

σs = Jq grad
1

T
+

1

T
(σu − ̺u̇) + ̺ṡ0 −

∑

i

̺ξiξ̇i (4.149)

If we divide this expression by the density and integrate it with respect to time, we
arrive at

t
∫

−∞

1

ρ
σs dt =

t
∫

−∞

[

1

ρ
Jq grad

1

T
+

1

T

(

σu

ρ
− u̇

)

+ ṡ0

]

dt − 1

2

∑

i

ξ2
i ≥ 0. (4.150)

Here we assumed that the medium at its starting state was in equilibrium (t = −∞),
i.e. that the dynamic variables were zero at t = −∞. Since the sum 1

2

∑

ξ2
i is always

positive, inequality

t
∫

−∞

[

1

ρ
Jq grad

1

T
+

1

T

(

σu

ρ
− u̇

)

+ ṡ0

]

dt ≥ 0 (4.151)
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should hold. In this inequality, no non-equilibrium entropy is included; thus its
validity can also be required if we postulate that unambiguous entropy can only be
defined in equilibrium. From this fundamental inequality, surprisingly, far-reaching
conclusions can be drawn [109].

The remaining three groups of theories do not deny the existence of non-equilib-
rium entropy. (All these theories derive their results from the inequality reflecting
the positive nature of entropy production. The rational thermodynamic theories
normally do not explicitly refer to entropy production and call the inequality writ-
ten for its actual form Clausius-Duhem inequality.) Theories of the first group
postulate the existence of non-equilibrium entropy as well as its additivity similar
to equilibrium entropy. This method is characteristic for the majority of “rational
thermodynamic” theories [23, 121, 152].

Theories in the second group only slightly differ from those in the first one.
Non-equilibrium entropy exists also here and is additive; however, its existence
is not given a priori. In these theories entropy is a derived quantity similar to
thermostatics. The shortcomings of these theories originate from the insufficiently
convincing arguments in the course of the various derivations of entropy that often
lead also to different results [31, 132, 155].

In the theories of the third group entropy is not an additive quantity, entropy
production density cannot be interpreted, and the inequality representing the sec-
ond law of thermodynamics may only be written for the whole of the medium.
Their fault is that they are in contradiction with the results obtained by statistical
methods; and by the assumption of interactions not being local, they reject the
principle of local action successfully applied since the activity of Faraday.

Our third aspect for comparing the various theories is the form of entropy cur-
rent. In this respect, three cases can be distinguished.

In theories of the first type, correlation

Js =
1

T
Jq

1

T
=

∂s

∂u
(4.152)

holds similar to traditional irreversible thermodynamics based on the hypothesis of
local equilibrium.

In the second type, the current of entropy remains parallel to the heat current;
however, the coefficient is not the temperature as it is in thermostatics, i.e.

Js =
1

T
Jq

1

T
6= ∂s

∂u
(4.153)

where T is the so-called non-equilibrium temperature.
Finally, in the third type, the entropy current is not necessarily parallel to the

heat current:

Js =
1

T
Jq + K

1

T
=

∂s

∂u
(4.154)

It should be noted that at present very great confusion exists with both the dif-
ferent theories and their nomenclature. There are authors who call only theories
characterizable by equation (4.154) “extended irreversible thermodynamics”.

It is noteworthy that the “entropy-less” thermodynamics of Meixner — though
it does not interpret explicitly any entropy current — belongs to the second type.
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The aspects discussed so far characterize the essential differences between the
various types of modern thermodynamic theories; however, it is worthwhile to men-
tion the problem of entropy supply as well.

In several theories it is usual to introduce the concepts of heat and entropy
supply. In these theories the internal energy balance has the form

̺u̇ + div Jq = σu + r, (4.155)

where r is the so-called heat supply, which may be, e.g., the heat taken up by
radiation in unit volume and time. By analogy, the entropy balance is also extended:

̺ṡ + div Js = σs + rs, (4.156)

where rs is e.g. the entropy transfer by radiation. On the basis of the correlation
between entropy supply and heat supply, the theories can be classified in three
groups:

rs =
1

T
r,

1

T
=

∂s

∂u
, (4.157)

rs =
1

T
r,

1

T
6= ∂s

∂u
, (4.158)

rs =
1

T
r + k,

1

T
=

∂s

∂u
, (4.159)

respectively, where k is analogous to K in equation (4.154).
These alternative correlations are analogous to the formulae concerning entropy

current. This question will not be discussed in detail, since the introduction or non-
introduction of heat and entropy supply is not a fundamental question; in many
cases, however, it is very convenient for describing the phenomena, as the heat
arriving at a certain point (e.g. radiation) may be included in heat current Jq.

The acceptance or rejection of Onsager-Casimir reciprocal relations is also a dif-
ference of minor importance (part of the experts of rational thermodynamics reject
them owing to the lack of an exact phenomenological proof) since their existence is
a fact which can be checked experimentally. On the other hand, the history of the
theory of liquid crystals demonstrates that the Onsager-Casimir reciprocal relations
can be added to a theory later on as Parodi has done with Leslie’s theory [131].
The question of linearity vs. non-linearity is mentioned last. This also belongs to
the problems of minor importance, since the experts using linear theories are aware
that the linear constitutive laws are only approximations; however, in quasi-linear
theories using non-constant material coefficients, these approximations are very
good, indeed, and with few exceptions satisfy the demand of practical applications.
The strictly non-linear theories are also often capable of producing results exper-
imentally provable and practically applicable only up to a linear approximation.
They are similarly valid for certain modern theories of mixtures, which consider
the simultaneous existence in space and time of superimposed continua. Their clas-
sification according to the above aspects is double: other regularities are true for
the individual component continua than for their ensemble [4].



CHAPTER V

THERMODYNAMICS OF DEFORMATION.

SYSTEMS CLOSE TO EQUILIBRIUM

Although we have expounded the foundation of thermodynamics using a fairly
involved (even though far from general) model of continuous media, we present here
the thermodynamics of deformations for less complicated media, as this simplifica-
tion does not prevent demonstration of the general characteristics of the method.
The entropy production expressed in equation (4.42) pertains to anisotropic sys-
tems in which heat conduction, conduction of electricity and transport of internal
moment of momentum take place, and electric and magnetic polarization phenom-
ena and also deformation occur. Such a general examination of various interactions
is rather laborious. Therefore, we are going to study bodies of constant composition
in which macroscopic electric and magnetic phenomena are absent and the couple-
stress is a zero tensor. In most cases we shall presume isotropic media and assume
that they continue being isothermal during motion. We shall return to some of the
neglected interactions later on.

5.1. Media in local equilibrium.

First, we shall treat media which during their motion, remain in the state of local
equilibrium. According to this condition, specific internal energy u and deformation
tensor d will be sufficient for the complete description of the state of the medium.
Specific entropy s and entropy production density σs have the forms

s = s(u,d) (5.1)

and

Tσs =

[

ts + ̺Td
∂s

∂d

]

:
1

2

(

d̊d−1 + d−1d̊
)

, (5.2)

respectively. Equation (5.2) was obtained by reducing equation (4.42). Because
of the lack of internal moment of momentum, zero torque and zero couple-stress
(the former due to the absence of electromagnetic phenomena; see equation (2.50)),
Cauchy’s stress tensor becomes symmetric:

t = ts

(see equation (2.45); superscript s will be neglected for this reason). Generalized
fluxes and forces in equation (5.2) are

J =
1

2
(d̊d−1 + d−1d̊) and X = t+ ̺Td

∂s

∂d
(5.3)
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respectively. Since in our case both the thermodynamic force and the thermody-
namic current density are symmetric tensors of second order, we have six indepen-
dent scalar components for each.

First, we examine the case of equilibrium ensured by the conditions

J =
1

2
(d̊d−1 + d−1d̊) = 0 and X = t+ ̺Td

∂s

∂d
= 0. (5.4)

The second of these equations gives us the sense of ∂s
∂d

, namely

∂s

∂d
= −

1

̺T
d−1t. (5.5)

This equation, however, holds in equilibrium only. In order to arrive at a graphic
description we introduce the notation

te = −̺Td
∂s

∂d
(5.6)

and, using it, rewrite equation (5.5) as

te = t. (5.7)

Since the entropy depends on the variables u and d only, the same holds for its
derivatives; e.g., for te,

te = te(u,d). (5.8)

Comparing equations (5.7) and (5.8) we see that te is the stress in an equilibrium
state characterized by energy u and deformation d. In the literature it is usually
referred to as “equilibrium (or elastic) stress”. For the description of systems outside
equilibrium, it is practical to introduce the tensor

tv = t− te (5.9)

which is called viscous stress. Since in equilibrium

tv = 0,

zero viscous stress can be considered as a condition for equilibrium. Substituting
tv into equation (5.2), we obtain the entropy production density as

σs =
1

2T
(d−1tv + tvd−1) : d̊ =

1

2T
tv : (d̊d−1 + d−1d̊) (5.10)

and, in the energy picture, the energy dissipation as

Tσs = tv :
1

2
(d̊d−1 + d−1d̊) = tv : (Gradv)s. (5.11)
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In linear theory the components of the viscous stress tensor tv are homogeneous
linear functions of the components of tensor (Gradv =)s, as expressed in isotropic
media, by the well-known [61, 70] linear constitutive equations

tv = η[Gradv + (Gradv)T ] + ηv divv δ (5.12)

where η and ηv are coefficients of shear and volume viscosity, respectively. The
relations

η > 0 2η + 3ηv > 0 (5.13)

hold, since entropy production is always positive. Owing to isotropy, Onsager’s
reciprocal relations are trivially satisfied.

Finally, in the case of an isotropic medium in local equilibrium, Cauchy’s stress
tensor is given by the relation

t = te(u,d) + η[Gradv + (Gradv)T ] + ηv div v δ (5.14)

where η and ηv may depend on u and d, in the general case. It is important to
mention that inequalities (5.13) must always be satisfied and dependence on u can
be reformulated as dependence on the temperature. At first sight, equation (5.14)
seems to be unambiguous; however, we must keep in mind that the choice of the
reference configuration had not been made so far. The equation describing the
behavior of the medium under fixed experimental conditions must be expected to
give the same stress independent of the choice of the reference configuration. How-
ever, owing to the change of the forms of the functions te(d), η(d), and ηv(d), the
actual form of equation (5.14) will depend on the choice of reference configuration.
An unsuitable choice can result in an unreasonably complicated form of equation
(5.14).

Concerning the choice of the reference configuration, let us assume that for every
medium at least one configuration exists where the stress tensor will become zero if
the configuration is maintained for a sufficiently long period. In order to realize the
existence of such a state free from stress let us cut out a fairly small portion of the
medium and, put it into an environment of the same temperature. It is supposed
that this environment is in equilibrium and no forces act upon the sample. Sooner
or later, the sample will reach a certain state of equilibrium. Its configurations in
this equilibrium state are usually denominated “undeformed configurations”. The
use of the plural is justified by the fact that there are no preferred directions in the
environment; consequently, during rotation, equilibrium is conserved. Properties of
the sample of an anisotropic medium, however, are relevantly changed by rotation.

5.1.1. Equilibrium of solids. In media at rest d = 0. If a state free of stress
has been chosen for reference configuration, equation (5.14) reduces to

t = te(d) (5.15)

which, due to isotropy of the medium takes the analogous form

t∗ = te(d∗) (5.16)
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in another reference frame. In equation (5.16),

t∗ = QtQT and d∗ = QdQT (5.17)

and Q is the orthogonal tensor of the change of frame (see chapter 3.4). In other
words, function te(d) satisfies the identity

Qte(d)QT = te(QdQT ) (5.18)

for any orthogonal tensor Q, i.e., te(d) is a so-called isotropic function that can, in
any case, be written as

te(d) = f1δ + f2d+ f3d
2 (5.19)

where f1, f2 and f3 are scalar-valued functions dependent on the scalar invariants
of tensor d. The functions f1, f2 and f3 cannot be arbitrary because, according
to equation (5.6), function te(d) is derived from the scalar-valued function ̺Ts(d),
and, therefore, the identity

−̺T
ds(d)

dt
= (d−1te) : d̊ = f1d

−1 : d̊+ f2 tr d̊+ f3d : d̊ (5.20)

must be satisfied whatever be the value of te(d). The conditions for this can be
obtained by elementary, though laborious, calculations, as follows. Substituting the
scalar invariants of tensor d, i.e.,

J1(d) = trd = d1 + d2 + d3

J2(d) =
1

2
(trd)2 −

1

2
d : d = d1d2 + d2d3 + d1d3

J3(d) = detd = d1d2d3

(5.21)

we can rewrite equation (5.20) as

−̺T

[

∂s

∂J1
tr d̊+

∂s

∂J2
trd tr d̊− d : d̊) +

∂s

∂J3
J3d

−1 : d̊

]

=

= f1d
−1 : d̊+ f2 tr d̊+ f3d : d̊

and since d and d̊ can be chosen arbitrarily, we obtain the equations

f1 = −̺TJ3
∂s

∂J3

f2 = −̺T

(

∂s

∂J1
+ J1

∂s

∂J2

)

f3 = ̺T
∂s

∂J2
.

(5.22)

Using the equality of the mixed second partial derivatives, we finally obtain inter-
relations between f1, f2 and f3. It must be remembered that ̺ and T change in
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the course of deformation. Derivation of the relations can be made easier by intro-
ducing the free energy in the case of isothermal systems. Media for which equation
(5.19) — non-linear in d — holds are termed hyperelastic materials. A well-known
example is the rubber elasticity where equation (5.19) takes the form

te = f1δ + µd2 (5.23)

In the case of such a model rubber f2 = 0 and f3 = µ =constant. (Further details
of hyperelasticity will not be treated here.)

According to the chosen stress-free reference state, function (5.19) is zero if
d = δ, i.e. in the absence of deformation. In the case of small deformations,
function (5.19) is well approximated by a function linear in the components of d:

te = λ tr(d− δ)δ + 2µ(d− δ) (5.24)

and in equation (5.24) we have Hooke’s law of elasticity. Its familiar form

te = 2µε+ λΘδ (5.25)

is obtained by the substitutions

d− δ = ε and tr ε = Θ.

5.1.2. Motion of solids. If the solid moves, a stress proportional to the rate
of deformation will be added to the equilibrium stress te as it is seen from equation
(5.14). Restricting the treatment to small deformations, we certainly may neglect
the dependence of η and ηv on deformation. Therefore, according to equation
(5.24), equation (5.14) becomes

t = 2µ(d− δ) + λ tr(d− δ)δ + 2η(Gradv)s + ηv divv δ (5.26)

For this reason, the stress can be split into two parts. One is linear in d − δ

describing deformation, the other one is homogeneous linear function of deformation
rate (Gradv)s = d̊. We have here a full analogy to equation (3.20). Therefore,
identity of a solid in local equilibrium with Kelvin body is affirmed.

5.1.3. Motion of fluids. Reference configurations free of stress will be used in
the treatment of motion of liquids and gaseous media, too. Relations for fluids can
be obtained by adaptation of those valid for solids taking Pascal’s law into account,
i.e., the isotropic nature of the equilibrium stress tensor:

te = −p δ (5.27)

This is equivalent to f2 = f3 = 0 in the general formula (5.19). Thus, according
to equation (5.22), the entropy merely depends on J3(d) (but not on the two other
invariants). In other words, the entropy is a function of volume change only (and,
of course, of the internal energy) as seen from equation (1.37). Consequently, in
the case of fluids instead of equation (5.1) we have the simpler equation

s = s(u, v) (5.28)
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where v denotes specific volume that is related to tensor d by

v = v0 detd, (5.29)

(see equation (1.37)). Thus, from (5.28) we obtain

∂s

∂d
= v

∂s

∂v
d−1 (5.30)

and, using (5.6)

te = −̺Tdv
∂s

∂v
d−1 = −T

∂s

∂v
δ. (5.31)

Comparing equations (5.27) and (5.31) we arrive at the well-known relation

p = T

(

∂s

∂v

)

u

. (5.32)

For moving isotropic fluids in local equilibrium, Cauchy’s stress tensor takes the
form

t = −pe(u, v)δ + η[Gradv + (Gradv)T ] + ηv divvδ (5.33)

that is the material equation for a Navier-Stokes fluid. Substituting equation (5.33)
into Cauchy’s equation of motion (2.15), we obtain the fundamental equation of the
hydrodynamic theory of viscous fluids, i.e., Navier-Stokes’ equation. Together with
the equation of conservation of mass, this is a complete set of differential equations:

̺
dv

dt
= − grad pe(u, v) + η∆v + (η + ηv) grad div v + ̺f

d̺

dt
+ ̺div v = 0.

(5.34)

Out of fluid motions those without volume change are of distinguished importance.
For such cases the term “incompressible fluids” is used. The point of the matter
is that very small change in the specific volume (or density) involves significant
change of equilibrium stress or, conversely, stresses occurring during motion gen-
erate negligible changes in density. That is the reason for the use of the term
“incompressible”. In the case of motion without volume change, the Navier-Stokes
equations take the simple form

̺
dv

dt
= − grad p+ η∆v + ̺f

div v = 0.
(5.35)

The fact that the pressure p in equation (5.35) is not identical to the equilibrium
pressure function pe(u, v) does not involve any problem; together with the solution
of equations (5.35), the value of p is also obtained as a function of position and
time.
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Due to the structure of equations describing motion of incompressible fluids and
also due to the properties of isotropic functions, it is reasonable to express Cauchy’s
stress as the sum of two tensors:

t = −pδ + tD (5.36)

tr tD = 0.

Equations (5.36) imply the relation

p = −

1

3
tr t (5.37)

where p is the scalar pressure and tD the deviatoric stress. Using these, we may
rewrite equation (5.14) as

−p = −pe(u,d) + (
2

3
η + ηv) div v

tD = teD(u,d) + 2η(Gradv)s0
(5.38)

where

(Gradv)s0 =
1

2
Gradv +

1

2
(Gradv)T −

1

3
(div v)δ (5.39)

denotes the symmetric and trace free part of the velocity-gradient which is related
to tensor d0 introduced towards the end of section 1.2. Combination of equations
(1.46), (1.47) and (1.48) leads to

Gradv = d̊d−1 + ω (5.40)

and hence
Gradv + (Gradv)T = d̊d−1 + d−1d̊. (5.41)

Further, by the use of equation (1.51) and of λv and d0 as introduced in equation
(1.38)

Gradv + (Gradv)T = 2λ̇vλ
−1
v + d̊0d

−1
0 + d−1

0 d̊0 (5.42)

is obtained, which combined with equation (1.52) leads to

div v = tr(Gradv) = 3λ̇vλ
−1
v =

1

v

dv

dt

(Gradv)s0 =
1

2
(d̊0d

−1
0 + d−1

0 d̊0).

(5.43)

The second of equations (5.43) becomes very simple if the present configuration is
selected as reference configuration, for then we have d0 = δ and hence (Gradv)s0 =

d̊0. The last equation is an approximation in the case of small deformations while,
however, high degrees of volume change and rotation are allowed. In these cases
the second of equations (5.38) is rewritten and, for the stress deviator,

tD = teD + η(d̊0d
−1
0 + d−1

0 d̊0) (5.44)

is obtained and, for the special case of fluids,

tD = 2ηd̊0. (5.45)

Equation (5.45) can very advantageously be used in the study of incompressible
liquids where the equation pertaining to the scalar pressure is of no use.

As it appears from equation (5.45), the deviatoric part of stress for a fluid in
local equilibrium is proportional to the rate of deformation. In other words, a fluid
in local equilibrium is identical to the rheological Newton body.
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5.2. Material symmetry.

Let us now turn to some details and questions pertaining to equivalent reference
configurations. In the case of most media for any reference configuration, we may
find another one that is equivalent to the first. In other words, properties of and
processes in the medium will be unchanged if the motion is preceded by another
one leading to a configuration equivalent to the original. In order to present a
more exact formulation, we shall consider two equivalent reference configurations
whose position vectors should be denoted by X and X∗. The corresponding two
deformation-gradient tensors will be represented by x and x∗. Equivalence of the
two reference configurations means that the quantities characterizing the medium
are not affected by the exchange of x and x∗. The motion connecting the two
reference configurations is described by the tensors x−1x∗ and x∗x−1, respectively.
We call these tensors symmetry operations of the medium pertaining to its given
configuration.

Let us now study some properties of symmetry operations.
Theorem 1: Symmetry operations belonging to a given configuration constitute

a group.
For the proof of this, it is enough to show that (a) the inverse of any symmetry
operation is a symmetry operation, too, and (b) the product of any two symmetry
operations is also a symmetry operation. The associative law is guaranteed by the
fact that symmetry operations are non-degenerate tensors of order two and the unit
element is a symmetry operation which can be associated with any configuration
(x∗ = x).

Interchanging configuration x with an equivalent one, say x∗, we can see that
the inverse of the symmetry operation exists, for

s = x−1x∗, x∗−1
x = (x−1x∗)−1 = s−1. (5.46)

We show now that symmetry operations belonging to equivalent configurations are
identical. Equations

x∗ = xs1 and x∗∗ = xs2 (5.47)

can be given as forms of the deformation gradients belonging to any actual con-
figuration. In equations (5.47) s1 and s2 are two given symmetry operations; x is
the deformation gradient pertaining to the chosen reference configuration while x∗

and x∗∗ pertain to the configurations resulting from the chosen one by the use of
s1 and s2, respectively. Since s−1

1 is a symmetry operation as well, a configuration
equivalent to the chosen one exists, and the deformation gradient belonging to this
equivalent configuration is

x′ = xs−1
1 (5.48)

Therefore, we have

s1s2 = (x
′−1x)(x−1x∗∗) = x

′−1x∗∗ = s, (5.49)

i.e., the relation we wanted to prove.
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Theorem 2: Symmetry operations are unimodular tensors.
Using the rules for the multiplication of determinants and considering equation
(1.36), we have

det s =
detx∗

detx
=

v∗0
v0

(5.50)

where v0 and v∗0 are the volumes belonging to the respective configurations paired
by s. The absolute values of v0 and v∗0 must be equal; otherwise, the volume of the
body could be unlimitedly reduced by repeated application of s or s−1, without
any change of the properties of the medium. This, however, contradicts the law of
conservation of matter.

Replying upon the theorems just proved, we may declare that the symmetry
group pertaining to any configuration is a subgroup of the unimodular group.
Symmetry groups belonging to two different non-equivalent configurations, though
different, are, of course, similar. Let the motion coupling the two different config-
urations K and K ′ be A and the symmetry operation belonging to configuration
K be s . Configuration K will be transformed into K ′ by A and into K1 by s.
However, K1 is equivalent to K; thus A will transform configuration K1 into K ′

1

equivalent to K ′. Therefore, AsA−1 is a symmetry operation belonging to config-
uration K ′ , for it transforms K ′ into K and the latter into K1 and finally into K ′

1

which is equivalent to K ′.
Media can be classified according to the properties of their symmetry groups.
If the symmetry group of the medium is similar to some subgroup of the or-

thogonal group we will call the medium a solid. If the symmetry group includes
the orthogonal group, the medium will be called isotropic. If the symmetry group
of the medium and the complete unimodular group coincide, the medium will be
named isotropic liquid. It should be mentioned that the unimodular group includes
proper subgroups not similar to any part of the orthogonal group. Such symmetry
groups characterize liquid crystals. A detailed descriptive account of the possible
symmetry groups is a rather difficult task and, in spite of important results (Wang
[162]), unsolved so far.

5.3. Anisotropy by deformation.

In solids, deformation may lead to anisotropy even if the reference configuration
is isotropic. Deformation anisotropy occurs in viscous phenomena, too. Then,
viscous stress must be expressed by homogeneous linear relations more intricate
than equation (5.12). Their general form is rather complicated and follows the
symmetry of tensor d. If the deformation is small enough, the linear terms of the
power series of the coefficients with respect to the components of d will be sufficient.
The form of the linear relations expressing the viscous stress can easily be derived
from Gyarmati’s principle by the use of the dissipation potential Φ(J) defined
by equation (4.61). The reader is reminded here that thermodynamic current is
equal to the symmetric part of the velocity gradient, while the thermodynamic
force is identical to the viscous stress as defined by the second of equations (5.3).
Dissipation potential Φ(J) is a homogeneous quadratic function of the components
of tensor J and, by means of coefficients Rik in equation (4.61), depends also on d.
Owing to isotropy of the chosen reference configuration, Φ is an isotropic function
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of its variables. If we think that an expression linear in d is satisfactory, we shall
write

Φ(J ,d) = Φ0(J) +Φ1(J) : d. (5.51)

Since both the scalar-valued function Φ and the symmetric tensor-valued function
Φ1 are homogeneous, quadratic and isotropic functions of the tensor J , the follow-
ing forms can be given for Φ0 and Φ1

Φ0 =
1

2
c1(trJ)

2 +
1

2
c2J : J

Φ1 =

[

1

2
c3(trJ)

2 +
1

2
c4J : J

]

δ + c5(trJ)J + c6J
2

(5.52)

where c1, c2, c3, c4, c5, and c6 are material constants depending exclusively on
temperature. Combining equations (5.51) and (5.52), we obtain

Φ =
1

2
c1(trJ)

2 +
1

2
c2J : J +

1

2

[

c3(trJ)
2 + c4J : J

]

trd+ c5(trJ)J : d+ c6J
2 : d

(5.53)
Hence, owing to the general relation (4.64) for the viscous stress as thermodynamic
force, we arrive at

tv = (c1 trJ+c3 trd trJ+c5d : J)δ+c5Jd+(c2+c4 trd)J+c6(dJ+Jd). (5.54)

In an undeformed state (d = δ), this expression must reduce to equation (5.14).
Thus we have the relations

c1 + 3c3 + 2c5 = ηv

c2 + 3c4 + 2c6 = 2η.
(5.55)

Concerning equation (5.54), we have to remember that it is not more than the sum
of the first terms in a power series. Therefore, it will be reliable only if tensor d

does not differ much from the unit tensor. It must also be taken into account that
relations approximated by power series, like equation (5.54), may have different
physical senses depending on the choice of currents and forces, since this choice,
as the choice of any quantity to the description of material processes, is more or
less arbitrary. Entropy production, for example, is always a product of current and
force. However, concerning the process of deformation for the resolution of entropy
production into currents and forces, equation (5.2) is not the only possibility. Since

d̊ also can be taken as the rate of the material process and,

Tσs = tv :
1

2
(d̊d−1 + d−1d̊) =

1

2
(tvd−1 + d−1t) : d̊ (5.56)

the choice

X∗ =
1

2
(tvd−1 + d−1tv); J∗ = d̊ (5.57)

is as permitted as (5.3). The two choices are related by the equations

X∗ =
1

2
(Xd−1 + d−1X)

J =
1

2
(J∗d−1 + d−1J∗),

(5.58)
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i.e., by a linear transformation whose coefficients depend merely on the local state
variables, namely, on the components of d. According to Onsager’s theory there
is a homogeneous linear interdependence between currents and forces, specialized
by reciprocal relations. However, nothing is said in this theory as to how the
coefficients depend on the local state variables. Therefore, in the forms of the linear
laws belonging to different representations, the dependence of the coefficients on
the local state variables is different. Thus, we are advised by these circumstances to
be very careful while comparing power series approximations belonging to different
representations.

5.4. Heat conduction and deformation.

5.4.1. Thermoelasticity. We proceed now to the study of deformation in the
simultaneous processes of mechanical motion and heat conduction. While for the
specific entropy, we have equation (5.1) as before, equation (5.2) of the entropy
production must be extended according to non-zero temperature gradient. Special-
ization of the general equation (4.42) leads to

Tσs = −Jq

1

T
gradT + (t− te) :

1

2
(d̊d−1 + d−1d̊) (5.59)

where for small deformations we take

1

2
(d̊d−1 + d−1d̊) ≈ d̊. (5.60)

By the choice

Xq = −

1

T
gradT ; Jq;

Xd = t− te = tv; Jd = d̊

(5.61)

for thermodynamic forces and currents, we have the linear “laws” as

Jq = −

1

T
Lqq gradT = −λq gradT (5.62)

and

Xd = tv = 2ηJd + ηv(trJd)δ = 2ηd̊+ ηv div vδ, (5.63)

since in an isotropic body the third order tensors of the material coefficients relating
vectorial currents to second-order tensorial forces vanish for symmetry reasons. As
equation (5.63) shows, the temperature does not occur explicitly in the expression
of viscous stress. Heat conduction influences viscous phenomena to the extent that
the material constants η and ηv in equation (5.63) depend on temperature and,
accordingly, on position and time. An impact of viscous motion on heat conduction
exists as well, since the dissipation of power occurs as a source term in the balance
equation of internal energy.

The case will be of practical importance if the deformation is so slow that viscous
stress can be neglected. Then, deformation may be considered as exclusively owing
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to temperature change. And for the stress, we have (in terms of temperature instead
of internal energy)

t = te(T,d). (5.64)

A stressless reference configuration corresponding to uniform temperature indepen-
dent of position is a suitable choice. For small deformations, equation (5.64) can
be well approximated by the linear relation

te = 2µ(d− δ) + λ tr(d− δ)δ − (2µ+ 3λ)αT (T − T0)δ (5.65)

where T0 is the reference temperature and αT the linear dilatation coefficient of
the medium. Equation (5.65) is the fundamental equation of thermoelasticity and
the immediate generalization of Hooke’s law (see equation (5.24)). In some cases
also viscous stress must be taken into account and heat conduction as well. As an
example, calculation of the attenuation of acoustic waves should be mentioned.

5.4.2. Propagation of sound waves in media in local equilibrium. In
order to simplify calculations pertaining to sound waves, we assume small deviations
of the particles from their equilibrium position. The state of the medium in the
absence of propagating acoustic waves will be chosen as reference configuration.
This state will be assumed isothermal and stresses leading to anisotropy excluded.
Owing to small motions with respect to the reference configuration, the motion
function (1.4) can be rewritten in the form

x = X+ ~ξ(X, t) (5.66)

where ~ξ(X, t) is the displacement. The deformation gradient is approximated, in
this case, as

x = δ +
∂~ξ

∂X
≈ δ +Grad ~ξ. (5.67)

Hence, using the relations

[δ + (Grad ~ξ)s][δ + (Grad ~ξ)a] ≈ δ +Grad ~ξ (5.68)

and
[δ + (Grad ~ξ)a][δ − (Grad ~ξ)a] ≈ δ

we arrive at
d = δ + (Grad ~ξ)s; R = δ + (Grad ~ξ)a. (5.69)

The last three relations hold in linear order. (Grad ~ξ)s is the symmetric; (Grad ~ξ)a

the antisymmetric part of the displacement gradient. The system of equations
describing wave propagation is derived from: the internal energy balance equation
(4.26), the Fourier law of heat conduction (5.62), the equation of viscous stress
(5.63), Cauchy’s equation of motion (2.15), the actual expression for equilibrium
stress by neglect of some terms and linearization with respect to the components

of ~ξ. Since we need not distinguish the time derivatives of different kinds, they will
be denoted by a point. For simplification we shall use the notations

d− δ = ε, T − T0 = Θ (5.70)
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where T0 is the temperature in the reference state.
Comparing the balance equation of internal energy with Fourier’s law, we obtain

the equations describing acoustic phenomena in the form

̺u̇ = λq∆T + te : ε̇ (5.71)

where the term tv : ḋ, since it is quadratic, was omitted. Expressing the time deriv-
ative of internal energy by the time derivatives of temperature and of deformation
tensor ε, i.e.,

u̇ = cvṪ +

(

∂u

∂ε

)

T

: ε̇ (5.72)

and for ∂u
∂ε

substituting the well-known thermostatic relation

(

∂u

∂ε

)

T

= v

(

te − T
∂te

∂T

)

(5.73)

and substituting equation (5.72) into (5.71) we arrive at

̺cvΘ̇− T0
∂te

∂T
: ε̇ = λ0∆Θ (5.74)

which is at least partly an equation of transport character. In order to obtain the
complete form of the transport equation, we have to find the explicit form of the
second term on the left hand side, using an explicit expression for te. To this end,
we use an analogous method as in the case of equation (5.65), considering, however,
that our reference state is not free of stress. Thus, we may write

te = t0 + 2µε+ λ(div ~ξ)δ − (2µ+ 3λ)αTΘδ (5.75)

where t0 is the stress in the reference state. Partially differentiating with respect
to T (ε =constant) and introducing the result into equation (5.74) we have

̺cvΘ̇ + (2µ+ 3λ)αTT0 div ~ξ = λq∆T. (5.76)

Cauchy’s stress is obtained by the addition of equations (5.75) and (5.12):

t = t0 + 2µε+ λ div ~ξ δ − (2µ+ 3λ)αTΘδ + 2ηε̇+ ηv div ~̇ξ δ (5.77)

Substituting this into equation (2.15) we arrive at the differential equation describ-
ing the propagation of sound waves in non-isothermal systems

̺~̈ξ = µ∆~ξ+(µ+λ) grad div ~ξ−(2µ+3λ)αT gradΘ+η∆~̇ξ+(η+ηv) grad div ~̇ξ. (5.78)

It is important to remark that the body is at rest in the reference state and, con-
sequently,

0 = Div t0 + ̺f . (5.79)
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Equation (5.79) was used in the derivation of equation (5.78). Equations (5.76)
and (5.78) form a system of differential equations for acoustic phenomena in non-
isothermal systems.

The dispersion relations can be obtained from these equations by the use of
plane-wave solutions. Substituting the “ansatz”

Θ = Θ0e
i(kr−ωt)

~ξ = ~ξ0e
i(kr−ωt)

(5.80)

into equations (5.76) and (5.78), we obtain

− iω̺cvΘ+ (2µ+ 3λ)αTT0ωk~ξ = −λqk
2Θ− ̺ω2~ξ =

= −(µ− iωη)k2~ξ − [(λ+ µ)− iω(η + ηv)]k(k~ξ)− (2µ+ 3λ)αT ikΘ.
(5.81)

From these equations we have

ω2 =
µ− iωη

̺
k2⊥ (5.82)

for the transversal wave (k~ξ = 0) and

̺ω2 = k2‖

[

(2µ+ λ)− iω(2η + ηv) +
(2µ+ 3λ)2α2

TT0ω

̺cvω + iλqk
2
‖

]

(5.83)

for the longitudinal wave, the latter one being rather involved. We see that the
propagation velocity of the transversal waves is not affected by heat conduction
whose influence, however, upon the propagation velocity of longitudinal waves can
be very relevant, particularly in the range of high frequencies.



CHAPTER VI

THERMODYNAMICS OF DEFORMATION.

SYSTEMS FAR FROM EQUILIBRIUM

In the preceding chapter the motion of media in local equilibrium was stud-
ied. The possible form of the stress tensor derived from the linear theory of non-
equilibrium thermodynamics shows that media in local equilibrium always behave
as a Kelvin body or, in the case of fluids, as a newtonian fluid. The constitutive
equation (5.14) will describe the behavior of a rheological Kelvin body in principle,
if the stiffness of the spring and the viscosity of the dashpot in the mechanical
model depends on deformation (see Figure 6.1).,'* (

Figure 6.1
Non-linear Kelvin body

The derived equations, however, do not reflect the multifariousness of the ac-
tual behavior of media occurring in practice. To cite an instance, in the case of
media containing macromolecules, equation (5.14) does not explain the decrease
of viscosity with the increasing deformation rate or, similarly, it does not account
for thixotropy and plastic behavior. Such phenomena indicate that during their
motion certain media often cease to remain in the state of local equilibrium and
microscopic (dissipative) structures develop in them which extend their influence
to the macroscopic behavior of the medium. Clearly, determining the developing
stress we have to take into account the presence of dissipative structures. This
prerequisite condition is met by formal introduction of dynamic variables even if
deeper knowledge on the physical nature of the non-equilibrium structure of the
medium is lacking. However, we do not drop forever the endeavor to understand
the physical meaning of the dynamic variables introduced and we do not consider
them as “hidden variables”, hidden for ever. Soon, we shall be able to draw con-
clusions concerning macroscopic manifestations of the dynamic variables if some of
their main mathematical properties are known. We do not abandon this advantage
in spite of the fact that the physical nature of the applied dynamic variables is
temporarily unidentified.
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In order to simplify the calculations we restrict the treatment to isotropic and
isothermal media without diffusion, chemical reactions, transport of moment of
momentum, macroscopic electric and magnetic phenomena. Dynamic variables,
however, are indispensable for the description of non-equilibrium states. The dy-
namic variables will be assumed not to have transport and to be symmetric sec-
ond order tensors. The latter assumption corresponds to the fact that, owing to
isotropy, other tensorial quantities have no impact on the relation between stress
and deformation, at least not in linear order.

6.1. Bodies with a single dynamic variable.

A medium should be considered whose equilibrium states are determined by
internal energy u and deformation tensor d. To the characterization of the non-
equilibrium states, a symmetric zero trace second order tensor — as dynamic vari-
able — is required as well.

In light of section 4.3., by suitable choice of the dynamic variable, we can always
arrive at the form

s = s0(u, d) − 1

2
ξ : ξ (6.1)

for the specific entropy as function of the independent variables. In equation (6.1)
s0(u, d) is the equilibrium specific entropy and ξ the dynamic variable. The entropy
production can be obtained as a particular form of equation (4.36), i.e.

Tσs =

(

t + ̺Td
∂s

∂d

)

:
1

2

(

d̊d−1 + d−1d̊
)

− ̺Tξ : ξ̊. (6.2)

The choice

J1 =
1

2

(

d̊d−1 + d−1d̊
)

, J2 =
√

ρT ξ̊ (6.3)

for the thermodynamic fluxes will turn out to be very useful. The conjugate ther-
modynamic forces are read off from equation (6.2) as

X1 = t + ̺Td
∂s0

∂d
; X2 = −

√

̺Tξ (6.4)

The odd choice of current J2 is explained by the relation

J2 = −X̊2 (6.5)

for isothermal constant-volume motions that are of high practical importance. The
usefulness of equation (6.5) will turn out in calculations later on. It should be
emphasized, however, that this choice has no principal reasons. It is merely aimed
to simplify relations to be derived.

In equilibrium, both the currents and the forces are zero; consequently, owing
to vanishing of X1 we may conclude that equation (5.5) holds. Introducing the
equilibrium stress tensor te(u, d) and, according to equation (5.9), for the viscous
stress tv we obtain X1 = tv. In this case we may rewrite Onsager’s linear laws in
the general form

J1 = L11 : X1 + L12 : X2

J2 = L21 : X1 + L22 : X2

(6.6)
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where L11, L12, L21 and L22 are fourth order tensors reflecting the symmetry of
the medium, satisfying the Onsager-Casimir reciprocal relations and depending on
the local state variables u, d and ξ.

This form of the Onsager relations may involve rather complicated relationships.
Attention should be drawn here to the misleading nature of the term “linear laws”.
Naming equations in (6.6) “linear laws” we mean that thermodynamic currents
are linear functions of the thermodynamic forces where the coefficients still may
depend on the local state variables. It must be remembered, however, that in our
special case, thermodynamic force X2 is proportional to the dynamic local variable
ξ (see equation (6.4)). In general, any dependence of the coefficient of the “linear
laws” on the dynamic variable enables us to describe essential non-linearities even in
systems far from equilibrium. Attention should be paid to the fact that the sharp
boundary between quasi-linearity and strict non-linearity prevailing in media in
local equilibrium becomes resolved in systems far from equilibrium by the existence
of dynamic variables.

Not far from equilibrium, media present a simpler situation to us since depen-
dence of the conductivity coefficients on the dynamic variable may be neglected.
In this case, the “linear laws” represented by equation (6.6) are inherently linear in
the thermodynamic sense of the word, namely, linear in the thermodynamic forces.
The differential equations derived from them, however, are non-linear ones in the
mathematical sense. The calculations to be carried out later on will illustrate this
comment. In any case, the expression “linear laws” obviously originates from tradi-
tion rather than from the mathematical structure of these relationships. Returning
from philosophy to the subject, we shall show that relations (6.6) can be utilized
in description of rather complicated motion forms. Let us begin with the simplest
model of the motion of incompressible fluids.

6.1.1. Motion of incompressible fluids. In a description of the motion
of fluids, specific internal energy and specific volume can suitably be selected as
equilibrium state variables (see subsection 5.1.3.). If the volume change of the fluid
is negligible, the present configuration can be taken as reference configuration. As
integration of the equation of motion shows, the negative equilibrium pressure can
be identified with the spherical part of Cauchy’s stress tensor (see equation (5.27)),
and the trace of viscous stress is zero. Thermodynamic current J1 (see equation
(6.3)) is a zero-trace tensor as well and, owing to the above mentioned choice of
reference configuration, takes the form

J1 = d̊. (6.7)

Let us presume that the medium is not so far from equilibrium that the dependence
of the conductivity coefficients on the dynamic variable has to be taken into account.
Then, linear laws (6.6) reduce to the simpler form

d̊ = L11t
v − L12

√

̺Tξ
√

̺T ξ̊ = L21t
v − L22

√

̺Tξ
(6.8)

where, in this case, coefficients L11, L12, L21 and L22 depend purely on the temper-
ature. With respect to reciprocal relation, two cases can be distinguished. In the
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first case variable ξ is an even function of time and Onsager’s reciprocal relation
hold. In the other one, ξ is an odd function of time and Casimir’s reciprocal relation
is valid. Since, at present, isothermal constant-volume motions are our subject, we
shall profitably use variables α and β, respectively, where

√

̺Tξ =

{

α

β
if ξ is an

even

odd
(6.9)

type variable. Instead of equation (6.8) we have in the first case

d̊ = L11t
v − L12α

α̊ = L12t
v − L22α

(6.10)

and, in the second case
d̊ = L11t

v − L12β

β̊ = −L12t
v − L22β

(6.11)

The motion-stress relationship

τt̊t
v + tv = 2η(τd

˚̊d + d̊) (6.12)

is obtained from equations (6.10) and (6.11) by eliminating the respective dynamic
variable and by the use of the notations

τt =
L11

L11L22 ± L2
12

; τd =
1

L22

; 2η =
L22

L11L22 ± L2
12

. (6.13)

In the formulae of τt and 2η the negative sign should be taken in the case of
α and the positive one in that of β. Substituting equation (6.12) into Cauchy’s
equation of motion, we obtain the differential equation which, together with the
initial condition

d̊ =
τt

2ητd

tv, (6.14)

describes the motion of the medium. Equation (6.14) will hold if the motion starts
from local equilibrium or from complete rest, as can be derived from equations (6.10)
and (6.11), respectively, and equations (6.13). The other initial and boundary
conditions will not be discussed here, since they are well known from classical
hydrodynamics.

It is important to mention that equation (6.12) can experimentally be checked
for real media whose material coefficients τt, τd and η can be measured. Starting
from the defining equations (6.13), we can easily show that the important relation

1

τt

=
1

τd

± L2
12

L11

(6.15)

holds. From equation (6.15) we see that τt > τd for a dynamic variable of type
α and τt < τd for a β-type dynamic variable. Thus, to the question as to which
type (α or β) of dynamic variable should be used, an answer can be given based
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on experimental determination of the material coefficients (6.13) of the studied
medium.

Let us turn now to small-amplitude oscillations in media where, owing to the
absence of convection, material and partial time derivatives are equal. Using the
complex formulation of subsection 3.3.3. we get

τtptv + tv = 2η(τdp
2d + pd) (6.16)

or resolved for the stress

tv = 2ηp
τdp + 1

τtp + 1
d = 2Y (p)d. (6.17)

The complex modulus,

Y (p) = η
τd

τt

p +
p

τt

η(τt − τd)
+ p

τ2
t

η(τt − τd)

(6.18)

is identical with the complex viscosity of the generalized Maxwell body (see equation
(3.72) if τt > τd, i.e., if the dynamic variable is of α type. The corresponding
mechanical model is given in Figure 6.2. where from the parameters we may see
that the model cannot be used for β type (τt < τd) dynamic variables. Beyond
that, it can be shown that in this case, none of the mechanical models usual in of
rheology can be used.

-(* ''η0 = η τd
τt

µ1 = τt − τd

τ2
t

η1 = η τt − τd
τt

Figure 6.2
The Jeffrey body

The derivative of the complex modulus of any model of rheology with respect to
p is a positive real number, if p is real. Let us confirm this. From equation (6.17)
we see that

dY (p)

dp
=

τdτtp
2 + 2τdp + 1

(τtp + 1)2
(6.19)

which, for real p values, will be positive if the numerator on the right does not
vanish, i.e. if the discriminant

4τ2
d − 4τdτt = 4τd(τd − τt) < 0 (6.20)
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corresponding to α-type dynamic variable (τt > τd) since τd > 0.

The case τt = τd should be mentioned here, too. Then, according to equation
(6.15), L2

12 = 0, i.e., the dynamic variable cannot be excited as can be seen from
the second of equations (6.10) and (6.11), respectively, by substitution of L12 =
0. Then, the fluid behaves as newtonian provided that it has already been in
equilibrium or is aged enough to reach zero dynamic degree of freedom. Its model
is a simple dashpot.

However, we need not drop the advantage of the mechanical model even in the
case of β type dynamic variables if we introduce a new element in addition to those
current in rheology. Its behavior is described by the relation

σ = Θε̈ (6.21).* +σ = Θε̈

Figure 6.3
The inertia element

(see Figure 6.3) and it can be realized by a high-inertia though zero-mass fly wheel
with the axis between two parallel planes. Acceleration does not require consider-
able force while the force required for stretching is described by equation (6.21).
Rewriting the complex modulus in the form

Y (p) = ηp +
1

τt

η(τd − τt)p
+ 1

η(τd − τt)p
2

(6.22)

we see that the behavior of the medium can be described by the model shown in
Figure 6.4.

/'* +'ηη1 = η τd − τt
τt

Θ = η(τd − τt)

Figure 6.4
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6.1.2. Shear flow of liquids. Let us investigate now the shear-flow of liquids
whose motion is described by equation (6.12). First we treat steady flow. Using the
rectangular coordinates x1, x2, x3 and assuming rectilinear shear flow, i.e. taking

v1 = κx2; v2 = v3 = 0 (6.23)

for the velocity field, we obtain

d̊ =
κ

2





0 1 0
1 0 0
0 0 0



 ω =
κ

2





0 1 0
−1 0 0
0 0 0



 (6.24)

and hence

˚̊d =
κ2

2





−1 0 0
0 1 0
0 0 0





t̊v =
κ

2





−2tv12 tv11 − tv22 −tv23
tv11 − tv22 2tv12 tv13
−tv23 tv13 0





(6.25)

Inserting these into equation (6.12) we arrive at a matrix equation with the com-
ponent equations

−τtκtv12 + tv11 = −ητdκ
2

τt

κ

2
(tv11 − tv22) + tv12 = ηκ

−τt

κ

2
tv23 + tv13 = 0

τt

κ

2
tv13 + tv23 = 0

τtκtv12 + tv22 = ητdκ
2

tv33 = 0.

(6.26)

Equation (6.26) can easily be solved for the elements of the extra stress tensor. By
combination we obtain: from the third and fourth equations tv13 = tv23 = 0, and
from the first and fifth equations −tv22 = tv11. Inserting this last relation into the
second equation and combining it with the first one we finally obtain

tv12 = ηκ
1 + τtτdκ

2

1 + τ2
t κ2

tv11 =
η(τt − τd)κ

2

1 + τ2
t κ2

= −tv22 (6.27)

in complete correspondence with the description given in section 3.5. Thus, we
may summarize that from the linear thermodynamic theory we have derived the
viscometric functions (shear and normal stresses)

τ = ηκ
1 + τdτtκ

2

1 + τ2
t κ2

σ1 = −σ2 =
η(τt − τd)κ

2

1 + τ2
t κ2

(6.28)

which are plotted in Figures 6.5 and 6.6. We see that in the instance τt > τd (i.e.
dynamic variable of type α) the Ostwald diagrams treated in subsection 3.3.7 are
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well represented by the shear stress calculated above. After having determined the
shear stress function and thus the values of η, τt, and τd by viscometric measure-
ments we can calculate the normal stress functions by the use of equation (6.28).
Since we can determine the quantities in equation (6.12) if we know the functions

tv, d̊ and ω and their first time derivatives, it is obvious that a medium with a
single dynamic variable is a simple liquid (see section 3.4) and the functions in
(6.28) are really viscometric functions applicable to any viscometric flow.
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6.1.3. Complex-number treatment for shear flow. For the velocity field
given in equation (6.23), in row 3 and column 3 of the matrices of the tensors
in equation (6.12), all elements are zero. This fact can be used to simplify the
calculations carried out in section 3.2 even if shear rate changes in time. The order
of the matrices can, namely, be reduced from 3×3 to 2×2 by omitting the third
rows and third columns. Moreover, it is sufficient to use one row or one column
instead of the matrices, since they are zero-trace and, with the exception of ω,
symmetric matrices. The objective derivatives

[

a b
b −a

]◦

=

[

ȧ − κb ḃ + κa
ḃ + κa −ȧ + κb

]

(6.29)

can be calculated by the use of the substitutions

[

a b
b −a

]

⇐⇒ [ b a ] (6.30)

where for the ordered array (b, a) the operation of addition and multiplication with
a number is defined as in matrix algebra. The material time derivative can be
calculated as follows (see equation (6.29))

(b, a)◦ = (ḃ, ȧ) + κ(a,−b) (6.31)

or, projected onto complex numbers

(b, a) ⇐⇒ b − ia

(b, a)◦ ⇐⇒ (ḃ − iȧ) + iκ(b − ia).
(6.32)

By the last correspondence the calculations will become very simple if complex
numbers are used instead of the second columns of the 2 by 2 matrices [76, 157].
Thus, in steady state, equation (6.12) takes the form

τtiκtv + tv = 2η[τd(iκ)2d + iκd] (6.33)

where the tensorial notation refers to complex numbers. The complex number
corresponding to the stress tensor is easily obtained from equation (6.33). Before
turning to the calculation of tv let us substitute p for iκ

tv = 2η
τdp + 1

τtp + 1
d̊, (6.34)

Formula (6.34) is completely analogous to relation (6.14) valid for small-amplitude
oscillations; hence: the viscometric functions of shear flow as functions of the shear
rate on the one side and the real and imaginary parts of the shear stress as functions
of the angular frequency in the case of small-amplitude oscillations, on the other
side, have the same forms [28].

The complex treatment introduced here makes the calculations very easy. This
is very useful in complicated cases as, e.g., in the cases of shear flow with changing
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shear rate or of media needing several dynamic variables for description. Steady
shear flow should be taken as a first example and it should be shown how simple the
calculation of the dynamic variable from equation (6.10) becomes. The complex
form of equation (6.10) is

d̊ = L11t
v − L12α

iκα = L12t
v − L22α

(6.35)

hence

α =
L12

L11L22 − L2
12 + iL11κ

d̊. (6.36)

Substituting the notations of equation (6.13) we obtain

α =

√

2η(τt − τd)

1 + iτtκ
d̊.

Since, according to equation (6.24), d̊ has the real value κ/2, the canonical form of
α is

α =
√

2η(τt − τd)
1 − iκτt

1 + (τtκ)2
κ

2
(6.37)

and the matrix of the tensor is

α =

√

2η(τt − τd)

1 + (τtκ)2







κ2

2
τt

κ
2

0

κ
2

−κ2

2
τt 0

0 0 0






(6.38)

6.1.4. Transient stress. The complex-variable treatment can be well exploited
in tracing transient processes. For illustration, development of shear stress is de-
termined in the process of sudden emergence of shear flow. Let the velocity field
be given by equation (6.23), however, with κ as a function of time

κ(t) =

{

0 for t < 0

κ for t ≥ 0
(6.39)

We have to solve equation (6.12) in the time range t > 0 under initial conditions
(6.14). The differential equation in complex variables takes the form

τtṫ
v + (1 + iκτt)t

v = 2η(τdiκ + 1)
κ

2
. (6.40)

The steady viscometric functions stand as one of the particular solutions, since
equation (6.40) is an inhomogeneous first order linear differential equation. The
general solution

tv(t) = ηκ
1 + iκτd

1 + iκτt

+ Cexp

(

−1 + iκτt

τt

t

)

(6.41)
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is the sum of the particular solution of the inhomogeneous and the general solution
of the homogeneous equation. The initial condition (6.14) gives the constant C as

C =
ηκ(τd − τt)

τt(1 + iκτt)
, (6.42)

whose substitution into equation (6.41) leads to the real part

tv12 = ηκ
1 + τdτtκ

2

1 + τ2
t κ2

−−ηκ
τt − τd

τt

√

1 + τ2
t κ2

exp

(

− t

τt

)

cos(κt − ϕ) (6.43)

with
tanϕ = τtκ.

From the imaginary part, we obtain the time evolution of the normal stresses as

tv11 =
η(τt − τd)κ

2

1 + τ2
t κ2

+ ηκ
τt − τd

τt

√

1 + τ2
t κ2

exp

(

− t

τt

)

sin(κt − ϕ). (6.44)
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Figure 6.7 and 6.8 show the evolution of the shear and normal stresses. It will be
much more difficult to calculate these if at the outset we have a shear flow with
constant shear stress and we have to calculate the evolution of the shear rate and
of the normal stress. In this complicated case the system of differential equations
is non-linear; hence, the solution must be left to the computer.

6.1.5. Plastic behavior. Creep. Let us return now to the form of the shear
stress function given in equation (6.28). If the shear stress is gradually increased in
the way that time is always left for reaching stationary state (the smaller the τt the
shorter the waiting time is), increase of the stress in media with high τt/τd values
will cause small shear rate. Above a critical value of the shear stress, however, the
stress rate will suddenly and abruptly increase. If we now decrease the shear stress,
the relatively high shear rate will survive provided that τt/τd > 9. Arriving at a
second critical value of the shear stress (below the first one) we shall meet with a
sudden decrease of the shear rate. The relation can be seen in Figure 6.9. where
the thin line shows the unstable range of the shear stress function.

4τ
κ

Figure 6.9

(The curve of Figure 6.9 corresponds to a value of τt/τd = 15.) The described
behavior is typically plastic displaying the phenomenon of creep as well, i.e., the
medium does flow but very slowly under stress below the critical one.5x1

x2

Figure 6.10

Let us examine now the behavior of the medium in elongational flow. The
material will be assumed practically solid under slight load, since η has a very high
value. Thus a sample bar can be prepared. The bar will be stretched with the
stress σ along the x1 axis, its lateral faces will be left free. Then, the only non-
zero component of the stress tensor will be t11 = σ. We must remember that the
medium is a fluid and, accordingly, the deviatoric stress (i.e. the traceless part of
the stress tensor) totally belongs to the viscous stress and will be identical with
the latter if we neglect volume change. Therefore, the matrix of the viscous stress
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becomes

tv =
σ

3





2 0 0
0 −1 0
0 0 −1



 (6.45)

In order to calculate the velocity gradient tensor, we assume that lines parallel to
the x1 axes do not rotate; and thus the matrix of the velocity gradient will take
the form

Gradv = d̊ + ω =







d̊11 d̊12 − ω3 d̊13 + ω2

0 d̊22 d̊23 − ω1

0 d̊23 + ω1 d̊33






(6.46)

Supposing stationary motion we may take ω2 = 0 by suitable choice of axes x2 and
x3. Then, the stretching tensor d̊ and the spin tensor ω are represented by the
matrices

ω =







0 −ω3 0

ω3 0 −ω1

0 ω1 0






, d̊ =







d̊11 −ω3 0

−ω3 d̊22 d̊23

0 d̊23 d̊33






(6.47)

In order to determine the tensor components we substitute equations (6.47) into
the differential equations (6.12) and omit the total time derivatives. To this end

we have to calculate the actual expressions of t̊v and ˚̊d :

tv = tω − ωt = σ







0 −ω3 0

−ω3 0 0

0 0 0







˚̊d = d̊ω − ωd̊ =







−2ω2
3 ω3(d̊22 − d̊11) ω3(ω1 + d̊23)

ω3(d̊22 − d̊11) 2ω2
3 + 2ω1d̊23 −ω1(d̊11 + 2d̊22)

ω3(ω1 + d̊23) −ω1(d̊11 + 2d̊22) −2ω1d̊23







(6.48)

Rewriting equation (6.12) in the form

1

2ητd

(τt̊t
v + tv) = ˚̊d +

1

τd

d̊ (6.49)

and taking into account equations (6.45), (6.47) and (6.48) we obtain

σ

6ητd







2 −3τtω3 0

−3τtω3 −1 0

0 0 −1






=











1

τd
d̊11 − 2ω2

3

(

− 1

τd
+ d̊22 − d̊11

)

ω3 ω3(ω1 + d̊23)
(

− 1

τd
+ d̊22 − d̊11

)

ω3
1

τd
d̊22 + 2ω2

3 + 2ω1d̊23
1

τd
d̊23 − ω1(d̊11 + 2d̊22)

ω3(ω1 + d̊23)
1

τd
d̊23 − ω1(d̊11 + 2d̊22)

1

τd
d̊33 − 2ω1d̊23











.

(6.50)
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The elements of the matrices of equations (6.47) are calculated from the equations
between the respective elements of the two matrices in equations (6.50). From the
equation belonging to position (1,1) we obtain

d̊11 =
σ

3η
+ 2τdω

2
3 . (6.51)

Comparison of the elements in position (2,2) gives an equation containing d̊23.
Similar comparison pertaining to position (2,3) leads to an equation containing, in

addition to d̊22 and d̊23, also d̊11 which, however, can be eliminated by equation
(6.51). The system of these two equations has the solution

d̊22 = − σ

6η
− τdω

2
3 −

1

τd
ω2

3

τ−2

d + 4ω2
1

(6.52)

d̊23 = − 2ω1ω
2
3

τ−2

d + 4ω2
1

(6.53)

The equation between the elements in position (3,3), after substitution of equation
(6.53), gives

d̊33 = − σ

6η
− τd

4ω2
1ω2

3

τ−2

d + 4ω2
1

(6.54)

From the equation for position (1,3) after substitution of equation (6.51) we obtain

ω3ω1

[

1 − 2ω2
3

τ−2

d + 4ω2
1

]

= 0 (6.55)

There are three solutions of this equation: ω3 = 0 (case 1), ω1 = 0 (case 2) and

2ω2
3

τ−2

d + 4ω2
1

= 1 (6.56)

(case 3). Substitution of equation (6.5l) into (6.52) shows that in case 3

2d̊22 + d̊11 = − 1

τd

.

In case 1, equations (6.51)-(6.54) reduce to

d̊11 =
σ

3η

d̊22 = − σ

6η

d̊23 = 0

d̊33 = − σ

6η

(6.57)
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and the matrix of the stretching tensor takes the form

d̊ =
σ

6η





2 0 0
0 −1 0
0 0 −1



 (6.58)

In this case t̊v and ˚̊d become zero tensors and, therefore, equation (6.12) reduces
to

tv = 2ηd̊. (6.59)

Under the conditions given in case 1, ω1 cannot be evaluated. This, however,
is irrelevant, since it is the extension rate of the bar, i.e. d̊11, we are primarily
interested in.

In case 2 where ω1 = 0, from the equation for position (1,2), after substitution
of equations (6.51) and (6.52) we obtain

ω2
3 =

1

4τ2
d

[

σ

2η
(τt − τd) − 1

]

(6.60)

and

d̊11 =
σ(3τt + τd)

12ητd

− 1

2τd

. (6.61)

It follows from equation (6.60) that

σ >
2η

τt − τd

= σ∗

a > 0 (6.62)

is the precondition to case 2. The matrix of tensor d̊ is rather complicated in this
case. Its presentation is omitted here.

In case 3 characterized by equation (6.56) together with ω1 = −d̊23 6= 0, the
equations between the respective elements in positions (1,2) and (2,3) are solved

for d̊11 and d̊22. Thus we obtain

d̊11 =
στt

3ητd

− 1

τd

, d̊22 = − στt

6ητd

, (6.63)

and by their combination with equations (6.51), (6.52) and (6.56)

ω2
1 =

1

τ2
d

[

σ(τt − τd)

12η
− 1

2

]

, ω2
3 =

1

τ2
d

[

σ(τt − τd)

6η
− 1

2

]

(6.64)

which show the precondition for case 3 as

σ >
6η

τt − τd

= σ∗

b > 0. (6.65)

Introducing the variables

y = τdd̊11, x =
στt

2η
, x∗ =

σ∗τt

2η
, ξ =

τt

τd
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we obtain relations for the extension rate

case relation x∗ dy
dx

1 y = 2

3ξ
x — 2

3ξ

2 y = 3ξ+1

6ξ
x − 1

2

ξ
ξ−1

3ξ+1

6ξ

3 y = 2

3
x − 1 3ξ

ξ−1

2

3

It should be added that both the relations (6.62) and (6.65) contain the inequality

τt

τd

= ξ > 1. (6.66)

From the tabulated results we see immediately that the extension rate depends
linearly on the load in all the three cases; and also considering relation (6.66) we
may show that the slope of the straight line is the biggest in case 3 and is the
smallest in case 1. The straight lines attached to cases 1 and 2, and 2 and 3
intersect in points x1 and x2, respectively, where these values are solutions of the
equations

2

3ξ
x1 =

3ξ + 1

6ξ
x1 −

1

2
(6.67)

and
3ξ + 1

6ξ
x2 −

1

2
=

2

3
x2 − 1. (6.68)

Accordingly, the solutions

x1 =
ξ

ξ − 1
and x2 =

3ξ

ξ − 1

separate the three ranges 1, 2 and 3 (shown in Figure 6.11) in terms of the variables

σ and d̊11, i.e., load and extension rate. Figure 6.12 illustrates the situation for
very high values of ξ when range 3 lies outside the picture.6d̊11

σ
Figure 6.11

7d̊11

σ
Figure 6.12

In general, the conclusion can be drawn that during stretching along a single axis,
the medium definitely shows plastic behavior; and — in the range of small load —
it creeps. Non-zero ω1 in case 3 can be regarded as rotation of the angular velocity
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8x1

x2

Figure 6.13

vector around the axis of the tension. This motion, however, is not stationary,
and our presentation describes it in a coordinate system rotating with the angular
velocity.

Let us turn now to compression along a single axis whose model is shown in
Figure 6.13. The considerations used above with respect to stress can be applied,
together with equation (6.45), however, with negative values of σ. The planes
perpendicular to the x1 axes are assumed not to swing; therefore, the matrix of the
velocity gradient tensor is written in the form

Gradv = d̊ + ω =







d̊11 0 0

d̊12 + ω3 d̊22 d̊23 − ω1

d̊13 − ω2 d̊23 + ω1 d̊33






. (6.69)

Since ω2 can be made zero by suitable choice of the directions of axes x2 and x3,
the matrices of the rotation tensor ω and of the stretching tensor d̊ can be written
in the forms

ω =







0 −ω3 0

ω3 0 −ω1

0 ω1 0






and d̊ =







d̊11 ω3 0

ω3 d̊22 d̊23

0 d̊23 d̊33






(6.70)

The matrix of tensor −d̊ will be identical with that of d̊ in equation (6.47) if we
introduced the notation σ = −σ′. Multiplying equation (6.49) by (−1) we find the

tensorial form of the equation unchanged, though with σ’, −d̊11, −d̊22, −d̊23 and
−d̊33 in places of σ , d̊11, d̊22, d̊23 and d̊33. The theory expounded above on plastic
behavior in stretching can equally be applied to compression. Into the equations,
however, we have to put compressive stress instead of tensile stress and to replace
the negative value of the extension rate by the compression rate. Accordingly
figures illustrating the dependence of the extension rate on the tensile stress can be
applied to compressive stress as well. However, a symmetry operation is necessary.

The following important circumstances must be emphasized here. Plastic be-
havior is generally considered in the literature as a typical non-linear phenomenon;
nevertheless, in the present work it has been derived from Onsager’s strictly linear
non-equilibrium thermodynamic theory. Equation (6.50) applied to determine the
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velocity field is, however, not linear at all in the mathematical sense. Therefore, it
is not surprising that its solutions may describe plastic properties. Most relevant,
however, is the fact that non-linearity is due to the presence of rotations as factors
in the objective time derivative. Thus, it is not the non-linearity of the constitutive
equations that leads to non-linearity in the mathematical equations. This is a case
similar to that of the Navier-Stokes equations where the classical linear constitutive
equation is given while non-linearity occurs due to the almost 150 year well-known
term (v grad)v in the material time derivative

dv

dt
=

∂v

∂t
+ (v grad)v.

Similarly, in the case of plastic flow the terms τt(t
vω − ωtv) and 2ητd(d̊ω − ωd̊)

are non-linear, and essential in the problem but do not disturb the linearity of the
constitutive equations. Our conclusion that plastic behavior can be described by
the linear constitutive equations of Onsagerian thermodynamics is of fundamental
importance in principle and in practice.

Before proceeding, let us first examine the stability of the solutions obtained
above. In case 1, a tensor d̊ deviating from the original will be substituted into
equation (6.49) and the value of the time derivative of deviation δd̊ will be studied.

From the matrix elements in position (1,2), using the relation d̊11 + d̊22 + d̊33 = 0
as well, we obtain

στt

2ητd

δω3 = δω̇3 + δω3

(

1

τd

+ 2d̊11 + d̊33

)

, (6.71)

hence taking into account d̊11 and d̊22 from equations (6.57)

δω̇3 = δω3

1

τd

[

σ

2η
(τt − τd) − 1

]

. (6.72)

As can be seen, the solution in case 1 will only be stable if the factor of δω3 on the
right hand side is negative. Otherwise, the solution becomes unstable. Condition
of stability is therefore

σ <
2η

τt − τd

, (6.73)

which — in coincidence with equation (6.62) — means that case 1 will not be
realized, if case 2 becomes possible.

Let us turn now to the question of stability in case 2. Comparison of the elements
in positions (1,3) and (2,3) of the matrices in equation (6.50) leads to

δω1 + δd̊23 = 0

and

−δω̇1 =
1

τd

δω1 + δω1(2d̊22 + d̊11) = 0 (6.74)
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respectively. Using equations (6.57) and (6.61), after rearrangement, we obtain

δω̇1 = δω1

[

σ(3τt + τd)

12ητd

− 1

2τd

− σ

3η
− 1

τd

]

. (6.75)

Case 2 will not be stable either if the factor in brackets is positive. Condition for
this relation is

σ >
6η

τt − τd

, (6.76)

i.e. the same as the precondition of case 3 (see equation (6.65)). In other words, if
case 3 becomes possible, the stability of the two other solutions are lost. Thus, the
reality of plastic behavior seems to be proved.

Finally, let us examine what happens if the stress is so small that no notable
angular velocity evolves. Equation (6.12) can then be written in the simpler form

τtṫ
v + tv = 2η(τdd̈ + ḋ) (6.77)

This differential equation has the solution

ḋ =
1

2ητd

exp

(

− t

τd

)

t
∫

−∞

[

τtṫ
v(s) + tv(s)

]

exp

(

s

τd

)

ds =

=
1

2η
tv +

τt − τd

2ητd

t
∫

−∞

ṫv(s) exp

(

s − t

τd

)

ds

(6.78)

describing phenomenon identified above as creep, since in the case of constant
stress the second integral in equation (6.77) vanishes. At very high values of η and
negligible creep, the solution takes the form

ḋ ≈ 1

2η

τt − τd

τd

t
∫

−∞

ṫv(s) exp

(

s − t

τd

)

ds (6.79)

that is the solution of the differential equation

tv =
2η

τt − τd

(τdḋ + d − δ) (6.80)

if a suitable reference configuration is chosen. In other words, neglecting creep we
arrived at the differential equation (3,20) of a Kelvin body whose constants are

µK =
η

τt − τd

; ηK =
ητd

τt − τd

(6.81)

which is to say that the fluid model studied here shows not only the phenomenon
of plasticity, but in case of small load behaves as an elastic solid.
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In summary, we may say that a fluid model that can be described by a single
dynamic variable shows all properties characteristic for plastic materials with the
only exception of hardening. We have found Onsagerian linear thermodynamics
as an efficient tool for the analysis of deformations, since its simplest model has
described a large number of phenomena and behavior hardly imagined before.

6.1.6. Extension of complex representation to plane motions. Owing
to practical importance and mathematical simplicity, motion in the plane deserves
special interest. If a cartesian coordinate system is found so that

v1 = v1(x1, x2), v2 = v2(x1, x2), v3 = 0 (6.82)

is the velocity field, the motion will be termed plane motion. All elements of the
third row and third column will be zero in the matrix of the velocity-gradient.
Thus, reasoning in point 6.1.3. can be applied here, too. Components of the
angular velocity and stretching tensors become now

d̊ =







v1,1
1

2
(v1,2 + v2,1) 0

1

2
(v1,2 + v2,1) v2,2 0

0 0 0







ω =







0 1

2
(v1,2 − v2,1) 0

1

2
(v2,1 − v1,2) 0 0

0 0 0







(6.83)

For simplicity let us omit now the third row and the third column containing
only zero elements and use the components of tensors and the value of the tensor-
invariant of ω:

d̊12 =
1

2
(v1,2 + v2,1); d̊11 = v1,1; −ω =

1

2
(v1,2 − v2,1). (6.84)

If we continue to restrict our study to volume preserving motions and if the matrix
of d̊ is determined by its second column and by mapping it onto the complex
numbers in the way described in section 3. of this chapter, we may write

d̊ = d̊12 − id̊11; ˚̊d =
dd̊

dt
− 2ωid̊. (6.85)

From equation (6.12), we may conclude that the third row and column of the stress
deviator tv also contains zero elements; thus the stress deviator and its objective
time derivative may also be mapped onto the complex numbers as is shown by
equation (6.85):

tv = tv12 − itv11; t̊v = t̊v12 − i̊tv11 = ṫv12 − 2ωtv11 + i(−ṫv11 − 2ωtv12). (6.86)

By substituting them, equation (6.12) can be rewritten in the complex form

τt

(

dtv

dt
− 2ωitv

)

+ tv = 2η

(

τd

(

dd̊

dt
− 2ωid̊

)

+ d̊

)

, (6.87)
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This equation is well suited for practical calculations.
Let us now determine the eigenvalues of a tensor belonging to a given complex

number and the directions belonging to them. For this, let us write the complex
number into the trigonometric form, and let the eigenvector be a unit vector. In
this case the eigenvalue problem gives the following matrix equation:

z

[

− sin ϕ cos ϕ
cos ϕ sin ϕ

] [

cos α
sin α

]

= λ

[

cos α
sin α

]

(6.88)

where z is the absolute value of the complex number,
ϕ the angle of the complex number
λ the eigenvalue of the appropriate tensor and
α the polar angle of the eigenvector.

After trigonometric transformation we find that

λ = ±z, (6.89)

and
α =

ϕ

2
± π

4
, (6.90)

On separating the two cases we arrive at

λ1 = z; α1 =
ϕ

2
+

π

4
;

λ2 = −z; α2 =
ϕ

2
− π

4
.

(6.91)

It is apparent that it is easy to determine the eigenvalues and directions of a tensor
described by a complex number.

6.1.7. Elementary theory of streaming birefringence. Experience proves
that during motion, non-newtonian liquids become optically anisotropic and show
streaming birefringence. Birefringence can be observed by very sensitive methods
hence, the measurement of streaming birefringence became an important experi-
mental method for studying the dynamic structures formed by flow. A separate
chapter will deal with the electromagnetic phenomena therefore, they will be dis-
cussed here only briefly [133, 143].

The optical properties of a medium are determined by the permittivity tensor.
As usual, we assume the light passing through the medium does not influence the
motion owing to its small amplitude. The permittivity tensor is a property of the
medium in motion; thus, it is determined by the state parameters. Hence a function

ε = ε(u, v, α) (6.92)

should exist, the linear approximation of which is

ε = ε(u, v)δ + ε∗(u, v)α (6.93)

Here ε is the permittivity tensor,
ε∗ a material coefficient and
α the dynamic state parameter defined by equation (6.9).
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In order to determine tensor α, we should turn to equation (6.10). Since the
phenomenon is called streaming birefringence, a correlation is sought between ten-
sors α and d̊. Upon eliminating tv from equation (6.10) and using the notations of
equation (6.13) we obtain

α̊ +
1

τt

α =
L12

L11

d̊, (6.94)

which should be compared with equation (6.93). For convenience, let us introduce
notation

εD = ε − ε(u, v)δ (6.95)

for the deviatoric part of the permittivity tensor:

τtε̊D + εD = τtε
∗
L12

L11

d̊ = 2ε∗∗d̊, (6.96)

where ε∗∗ is a new material coefficient.
By solving equation (6.96), we arrive at the description of the optical properties

of flowing media. As an example, let us examine the optical behavior of the medium
in shear flow. Since εD satisfies all the conditions necessary for the introduction of
the complex notation, the solution of equation (6.96) is sought in a complex form.
For simplicity, let us restrict ourselves to stationary shear flow whose velocity field
is given by equation (6.23). Then d̊ corresponds to κ/2 and from the complex form
of equation (6.96) we obtain that

εD =
ε∗∗κ

1 + iτtκ
. (6.97)

For the extent of birefringence, the absolute value of the complex number εD is
characteristic:

|εD| =
ε∗∗κ

√

1 + τ2
t κ2

. (6.98)

On the other hand, the principal polarization directions are calculated on the basis
of equation (6.90):

α =
ϕ

2
± π

4
(6.99)

where
tanϕ = −τtκ. (6.100)

Thus, for small shear rates, the principal polarization directions point to the bisec-
tors of axes x1 and x2, which gradually turn over into the directions of x1 and x2

with increasing shear rate. Meanwhile, the magnitude of birefringence also increases
gradually:

|εD| =
ε∗∗

τt

sin ϕ. (6.101)

We utilized here the notation introduced in equation (6.100). Let us write the
extent of birefringence for the light beam passing to the direction of axis x3 :

∆n =
1

n

ε∗∗κ
√

1 + τ2
t κ2

; (6.102)
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where n is the refractivity of the medium at rest and ∆n the difference in the
refractivities of the two beams.

Finally, we mention that since εD has one positive, one negative and one zero
eigenvalue, the three eigenvalues of ε are different. In the physical sense this means
that the flowing medium behaves like an optically biaxial crystal, as seen from
equation (6.97).

6.1.8. Deviations from linearity. Until now, we applied the strictly linear
approximation of non-equilibrium thermodynamics: However, general quasi-linear
theory allows for coefficients to depend also on dynamic state parameters. Let
us now examine how our equations change if we allow the coefficients in equation
(6.6) to depend linearly on the components of α. On utilizing the isotropy of the
medium and restricting ourselves to volume preserving and isothermal motions,
more general equations (instead of equation (6.10)).

d̊ = L11t
v − L12α + L′

11

[

αtv + tvα − 2

3
δ(α : tv)

]

− 2L′

12

[

α2 − 1

3
δ(α : α)

]

,

α̊ = L12t
v − L22α + L′

12

[

αtv + tvα − 2

3
δ(α : tv)

]

− 2L′

22

[

α2 − 1

3
δ(α : α)

]

,

(6.103)
are obtained.

It is difficult to handle equations (6.103) mathematically; therefore, the general
case will not be dealt with, only the specific case for which L′

22 = 0 will be dis-
cussed. This choice has the advantage that equation (6.103b) becomes linear in
the components of α. The complex representation can no longer be used since the
non-linear terms lead non-zero matrix elements in position (3,3).

However, even this approximation has tremendous difficulties. If we want to
calculate, e.g., the viscometric functions, then we look for tensors α and tv by
knowing tensors d̊ and ω. The differential equations are not linear; thus calculations
are tedious. For circumventing this difficulty, instead of writing equation (6.6) let
us choose another representation. In writing the linear equations, let us consider
J1 and X2 as independent variables instead of X1 and X2. This representation
has various advantages. Linear laws then have the form:

X1 = H11 : J1 + H12 : X2,

J2 = H21 : J1 + H22 : X2,
(6.104)

where H11, H21, H12 and H22 are fourth order tensors satisfying Onsager-Casimir’s
reciprocal relations and depending on local state parameters. These equations take
the following form for incompressible liquids in a quadratic approximation:

tv = H11d̊ − H12α + H′

11

[

αd̊ + d̊α − 2

3
δ(α : d̊)

]

− 2H′

12

[

α2 − 1

3
δ(α : α)

]

,

α̊ = −H12d̊ −H22α −H′

12

[

αd̊ + d̊α − 2

3
δ(α : d̊)

]

− 2H′

22

[

α2 − 1

3
δ(α : α)

]

,

(6.105)
This is essentially also a quadratic approximation but it is not equivalent to equation
(6.103). The equations are not linear either. But if we assume that H22 = 0,
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then for a known velocity field the second equation becomes linear; from it, α

can be determined and by substituting α into the first equation, the stress can be
calculated.

To illustrate let us determine the viscometric functions as an example. However,
let us first show that the linear partial sum of equation (6.105), i.e. the special case
when H′

11 = H′
12 = H′

22 = 0 is equivalent to equation (6.10). To do this, let us
express tv and α̊ from equation (6.10):

tv =
1

L11

d̊ +
L12

L11

α,

α̊ =
L12

L11

d̊ − L11L22 − L2
12

L11

α;

(6.106)

from which expressions the coefficients H are obtained as

H11 =
1

L11

; H12 = −L12

L11

; H22 =
(L11L22 − L2

12)

L11

.

Let us now proceed to the calculation of viscometric functions. Let the velocity field
be given by equation (6.23), d̊ and ω by equation (6.24). Their substitution into
the second equation of (6.105) and by the utilization of H′

22 = 0 give the following
matrix equation:

− κ

2





−2α12 α11 − α22 −α23

α11 − α12 2α12 α13

−α23 α13 0



 = −H12

κ

2





0 1 0
1 0 0
0 0 0





−H22





α11 α12 α13

α12 α22 α23

α13 α23 α33



 −H12

κ

2





2

3
α12 α11 + α22 α23

α11 + α22
2

3
α12 α13

α23 α13 − 4

3
α12



 (6.107)

Let us first examine positions (1,3) and (2,3). The equation system obtained for the
determination of α13 and α23 is linear and homogeneous; its determinant becomes
zero only at a single, well-defined value of the shear rate. Disregarding this case,
α13 = α23 = 0. On the basis of position (3,3), we may write that

H22α33 =
2κ

3
H′

12α12; (6.108)

whereas from position (1,1) it follows that

H22α11 = κ

(

1 − 1

3
H′

12

)

α12, (6.109)

Position (2,2) gives

H22α22 = −κ

(

1 +
1

3
H′

12

)

α12. (6.110)
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Finally, α12 may be calculated from position (1,2):

α12 =
−H12

H22

κ
2

1 +
3−H

′2

12

3H2

22

κ2

. (6.111)

By knowing tensor α, the matrix of the viscous stress tensor can be calculated from
the first equation of (6.105). This complex expression will not be provided here,
but the viscometric functions obtained from them are the following:

tv12 = τ(κ) = η
τd

τt

κ +
η

(

1 − τd

τt

)

κ

1 + cos2 ζ1τ2
t κ2

(

1 + ζ2τ
2
t κ2 + 2

sin2 ζ1τ
2
t κ2

1 + cos2 ζ1τ2
t κ2

)

,

tv11 − tv33 = σ1(κ) =
η(τt − τd)κ

2

1 + cos2 ζ1τ2
t κ2

(

1 −
√

3 sin ζ1 −
ζ2

√
3

sin ζ1

)

−

− η(τt − τd)κ
2

[1 + cos2 ζ1τ2
t κ2]

2

√
3 sin ζ1

[

1 + κ2τ2
t

(

cos2 ζ1 −
2√
3

sin ζ1

)]

,

tv22 − tv33 = σ2(κ) = − η(τt − τd)κ
2

1 + cos2 ζ1τ2
t κ2

(

1 +
√

3 sin ζ1 +
ζ2

√
3

sin ζ1

)

−

− η(τt − τd)κ
2

[1 + cos2 ζ1τ2
t κ2]

2

√
3 sin ζ1

[

1 + κ2τ2
t

(

cos2 ζ1 +
2√
3

sin ζ1

)]

,

(6.112)

Here correlations (6.107) and notation (6.13) are utilized and notations

sin ζ1 =
H′

12√
3

; ζ2 =
H′

11H′
12H22

3H12

(6.113)

are introduced. From equation (6.112), it is seen that in the quadratic approxima-
tion the sum of the two normal stress functions is not zero.

We only mention that birefringence can also be calculated in this approximation,
but in this case it is advisable to also use a quadratic approximation instead of
equation (6.93), which, for the deviatoric part of the permittivity tensor, leads to
the form

εD = ε∗α + ε∗∗∗
[

α2 − 1

3
δ(α : α)

]

(6.114)

where ε∗∗∗ is another material constant. The calculated tensor α can be substituted
into this expression, but the lengthy calculation is omitted.

Finally, we mention that the assumption H′
22 = 0 is reasonable. Namely, instead

of the variable used so far, another variable, α, can be introduced by a topological
transformation which does not change the form of the linear approximation, whose
relaxation at d̊ = 0 occurs strictly according to equation (6.10b). This variable
has the disadvantage that the form of entropy is different from equation (6.1); thus
equation (6.4) will not be strictly valid for X2. But this does not significantly
change the form of quadratic equation (6.105).
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6.1.9. Volume viscosity. Let us now turn back to the linear theory and
examine the motion of a fluid whose volume changes, too. Assume again that the
dynamic variable is a second order, zero trace, symmetric tensor. The choice of
currents and forces should correspond to equations (6.3) and (6.4), and since we
deal with a fluid, equation (6.7) may also be kept valid. Naturally, the form of linear
laws will be different from equation (6.8). Utilizing the isotropy of the medium,
linear constitutive equations are written as

d̊D = L11t
v
D − L12

√

̺Tξ;
√

̺T ξ̊ = L21t
v
D − L22

√

̺Tξ;

tr d̊ = L∗

11 tr tv

(6.115)

where subscript D refers to the deviatoric part of the appropriate tensor. From the
first two equations it is seen that the same equations hold for the deviatoric parts
of d̊ and tv as in the case of constant-volume motions, and the third equation shows
that the zero trace dynamic variable does not play any role in the phenomenon of
volume viscosity.

The situation is completely different if the trace of the dynamic variable is not
zero. Then, instead of equations (6.115), the following equations are obtained:

d̊D = L11t
v
D − L12

√

̺TξD;
√

̺T ξ̊D = L21t
v
D − L22

√

̺TξD;

tr d̊ = L∗

11 tr tv − L∗

12

√

̺T tr ξ;
√

̺T tr ξ̊ = L∗

21 tr tv − L∗

22

√

̺T tr ξ.

(6.116)

The first group of the equations is unchanged; i.e., the connection between the
deviatoric part remains the same. The part describing the volume change, i.e.
the second group of the equations shows that the dynamic variable now influences
volume changes similarly as it did earlier with respect to deformations. However,
a significant difference is that in the second group of equations, the rotation of
the medium does not play any role. This is easy to prove by a brief calculation.
Thus, the volume changes can be followed by the method described in subsection
6.1.1. We also note that for quantities L∗

11, L∗
12, L∗

21 and L∗
22 in equation (6.116), the

Onsager-Casimir reciprocal relations hold as well as the inequality (4.65) concerning
them; but they have no relation to coefficients Lik-s without asterisks as they are
independent material constants. Another important difference is that the trace of
the stress tensor is not zero even in equilibrium therefore, the mechanical models
describing the volume viscosity of the medium characterized by equation (6.116)
should be completed with a parallel spring as compared to the model given in
subsection 6.1.1. The two rheological models are illustrated in Figures 6.14. and
6.15. (The former refers to an α-type, and the latter one, to a β-type dynamic
variable.)

We mentioned that the deviatoric part and the trace of ξ may be regarded as
two independent dynamic variables. In this case it is conceivable that the behavior
of ξD and tr ξ is different with respect to time inversion. However, in this case
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9(''* (
Figure 6.14

:(''* +
Figure 6.15

it is not appropriate to speak about a single dynamic degree of freedom; it should
rather be said that two dynamic variables are needed: the one is a scalar; the other,
a tensor with zero trace.

6.1.10. Motion of solid bodies. If the deformation is small for the motion
of solid bodies, constitutive equations (6.115) and (6.116) may be given in an un-
changed form. This means that for the deformation and volume change of solid
bodies, the rheological models shown in Figures 6.14. and 6.15. can be applied.
Thus this case will not be discussed here.

However, the situation is different for larger deformations, since the equilibrium
state parameter d representing deformation appears in linear laws (6.6). Another
difference is that here the selection of the reference configuration is more restricted;
hence, equation (6.7) does not hold.

With deformations, that are not too large however, we may presume about the
linear laws that they are linear also in the components of (d− δ). In this case due
to the isotropy of the medium, linear laws — for simplicity, only their deviatoric
parts — are written in the following form:

1

2
(d̊d−1 + d−1d̊)D =L11t

v
D − L12

√

̺TξD + L′

11

[

tvd + dtv − 2

3
δ(tv : d)

]

−

− L′

12

√

̺T

[

ξd + dξ − 1

3
δ(ξ : d)

]

+ L∗

11 tr tvd;

(6.117)
√

̺T ξ̊D =L21t
v
D − L22

√

̺TξD + L′

21

[

tvd + dtv − 2

3
(tv : d)δ

]

−

− L′

22

√

̺T

[

ξd + dξ − 2

3
δ(d : ξ)

]

+ L∗

12(tr tv)d.

Of course, these equations include also the anisotropy caused by deformation.

6.1.11. Some remarks on representation. At the beginning of this chapter
the selection of X2 in equation (6.4) might seem strange; furthermore, the introduc-
tion of variables α and β also requires explanation. The essence of the question is
in the form of the entropy function and the selection of the dynamic variables. We
have some freedom also in choosing the equilibrium state parameters; however, in
this the traditions of thermostatics provide sufficient assurance by defining the so-
called extensive variables. The situation is quite different in the choice of dynamic
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variables. These are new variables necessary only out of equilibrium. If we know
the quantitative physical meaning of the necessary dynamic variables and want to
follow also their course, then the only problem is that the form of the entropy func-
tion differs from that given in equation (4.34) and this fact makes the calculations
more difficult. Let us first examine this case. Let u be the specific internal energy;
ai the other state parameters; and ζj the dynamic variables which, we assume, we
accurately know their physical meaning. In this case, the specific entropy may be
given in the general form as

s = s(u, ai, ζj) (6.118)

If we consider a small part of the medium in an environment with which there is no
exchange of any chemical component, heat or work, then the values of equilibrium
state parameters remains unchanged. (If this condition is not fulfilled, the selection
of equilibrium state parameters has not been done well.) No similar constraints
hold for the dynamic variables. If the system is under such conditions, its entropy
can only increase; thus the conditions for equilibrium are provided by equations

∂s

∂ζj

= Zj(u, ai, ζj) = 0 (6.119a)

From these equations the equilibrium ζ0
j values of ζj are determined; if it were not

so, further equilibrium state parameters would be needed that would contradict our
hypothesis for choosing ai-s. Since entropy is maximum in adiabatic equilibrium,
we may write that

s = s(u, ai, ζ
0
j ) − ∆s(u, ai, ζj); (6.119b)

where ∆s is a non-negative function becoming zero only if ζj = ζ0
j . In the close

neighborhood of equilibrium, quadratic expansion of ∆s yields

∆s = −1

2

(

∂2s

∂ζi∂ζj

)

0

(ζi − ζ0
i )(ζj − ζ0

j ) (6.120)

From this, correlation

Zi = −
(

∂2s

∂ζi∂ζj

)

0

(ζj − ζ0
j ) (6.121)

results. The use of the second derivatives in calculations is quite tedious. Thus in
all cases in which the physical meaning of the dynamic variables is out of interest,
we change for a new variable ξ which simplifies the calculations. An affine transfor-
mation and a subsequent continuous transformation (which does not concern the
quadratic partial sum) lead to form

∆s =
1

2

∑

i

ξ2
j (6.122)

which is equivalent to equation (4.34). Since between variables ζ and ξa mutual
one-to-one and continuous transformation exists, entropy may be written in the
form

s = s0(u, ai) − ∆s (6.123)
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The dynamic variables, thus transformed, may be called canonical dynamic vari-
ables belonging to the entropy. Obviously, s0(u, ai) is the equilibrium entropy
function whose value is identical with s(u, ai, ζ

0
j ) in equation (6.119).

Since orthogonal transformation carried out for canonical variables do not change
the form of equation (6.122), this enables us to narrow further the definition of
canonical variables. This can be done in the following way. Let us analyze the time
course of dynamic variables. If the constant value of equilibrium state parameters
is fixed by the environment, the entropy production is given by

̺ṡ = σs = −̺ξj ξ̊j , (6.124)

from which Onsager’s linear laws may be written as

̺̊ξj =
∑

r

Ljrξr. (6.125)

We utilize the above orthogonal transformation for bringing the symmetrical part
of tensor [Ljr] to diagonal form. Close to equilibrium, with this variables ξj are
unambiguous except for the sign. If only Onsager’s reciprocal relations hold, the
mixed-index elements of matrix Ljr are zero; thus from equation (6.125), the simpler
relations

̺̊ξj = −Ljξj (6.126)

are obtained. (No summation has to be done for j-s.) If the medium does not
rotate, the solution of the equation is

ξj = ξj(0)e−
Lj

̺
t (6.127)

By a further topological transformation, we can assume that the time course far
from equilibrium (where laws (6.126) are no longer valid) would satisfy correlations

d

dt
(ξj)

1

Lj = −(ξj)
1

Lj (6.128)

Since the form of equations (6.126) is unchanged by transformations
∣

∣ξ∗j
∣

∣ = |ξj |α; ξ∗j ξj ≥ 0, (6.129)

these can be used for ensuring the linearity of cross-effects coupling the quantities
belonging to the equilibrium variables in as wide a range as possible. With this, we
made the selection of canonical variables unambiguous, even far from equilibrium
(aside from the sign).

Let us now proceed to energy representation. Notice that function s0(u, ai) is a
strictly increasing function of u and, thus, can be inverted with respect to u:

u = u0(s + ∆s, ai) (6.130)

Here u0(s0, ai) is a function known from thermostatics, which is a strictly increasing
function of s0. Consequently, by utilizing the positive nature of ∆s instead of
equation (6.130), we may write that

u = u0(s, ai) + ∆u (6.131)
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where ∆u is zero in local equilibrium; otherwise, it is a positive quantity.
Our considerations for the selection of dynamic variables can be repeated now,

and lead to

u = u0(s, ai) +
1

2

∑

j

ξ′2j (6.132)

When starting from the correlation

̺u̇ = 0 = ̺
∂u0

∂s
ṡ + ̺

∑

j

ξ′j ξ̊
′

j (6.133)

in the case of linear laws written for the canonical dynamic variables thus inter-
preted, then equations (6.125)-(6.129) remain valid. Note that temperature may
be interpreted in entropy representation as

∂s0

∂u
=

1

T
(6.134)

whereas in energy representation as

∂u0

∂s
= T (6.135)

Naturally, the two interpretations are not identical, though they do not differ in
linear order. The energy representation is close to the notations used traditionally;
therefore, its application is often to be preferred.

It is easy to proceed from entropy representation to energy representation. On
forming the objective time derivatives of both sides of equation (6.132), we obtain

u̇ =
∂u0

∂s
ṡ +

∂u0

∂ai

åi +
∑

j

ξ′j ξ̊
′

j (6.136)

and introducing equilibrium intensity parameters Γi by notations

∂u0

∂ai

= Γi, (6.137)

as well as utilizing equation (6.135) for the derivative with respect to entropy, we
arrive at

T ṡ = u̇ − Γi̊ai −
∑

j

ξ′j ξ̊
′

j . (6.138)

If we introduce entropy production repeatedly with this expression, we have to use
the following transcription

∂s0

∂ai

−→ − 1

T

∂u0

∂ai

; ξiξ̊i −→
1

T
ξ′j ξ̊

′

j .

With that, we obtain an expression for Tσs which is easy to handle

Tσs = ̺T ṡ + T div
Jq

T
= JqT grad

1

T
+ σu − ̺Γi̊ai − ̺

∑

j

ξ′j ξ̊
′

j . (6.139)

The selection of the representation is not a principal question; it is always made
for convenience and according to personal taste.
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6.2. Motion of a body with several dynamic variables.

Examine a medium whose description necessitates the use of more than one
dynamic variables which is supposed to be zero trace second order tensors. In
energy representation, the density of energy dissipation based on equation (4.27)
by the assumption of an isothermal medium is:

Tσs =

(

t − ̺d
∂u0

∂d

)

:
1

2
(d̊d−1 + d−1d̊) − ̺

∑

j

ξj : ξ̊j . (6.140)

If for simplicity we consider only constant-volume motions and assume about tensor
d−1 that it is a unit tensor (either because the medium is a fluid or because the
deformation is small) and introduce viscous stress tensor tv on the basis of equation
(5.9), we obtain

Tσs = tv : d̊ − ̺
∑

j

ξ′

j : ξ̊′

j . (6.141)

Let us first examine the case when all the dynamic variables are invariant under
time inversion. Then the introduction of notation

√
̺ξ′

j = αj (6.142)

is useful, as with it, the independent and dependent variables of linear laws are the
following:

X0 = d̊; Xj = −αj ; J0 = tv; Jj = α̊j . (6.143)

By considering that X0 is a variable of the β-type, linear laws can be written as

tv = L00d̊ −
∑

j

L0jαj ;

α̊j = −L0jd̊ − Ljαj .

(6.144)

These equations are similar to equation (6.10) only with more dynamic variables

and d̊ is chosen here as independent variable. This choice ensures, at the same
time, that there is no coupling between individual αj-s. Initial conditions

αj(0) = 0 (6.145)

have to be considered also for a motion starting from equilibrium. If we know the
velocity field, these equations are linear and relatively easy to solve. However, if
we consider stress as the known quantity, our equations are non-linear and quite
difficult to solve corresponding to the structure of the objective time derivative.

6.2.1. Small-amplitude oscillations. Let us now turn to small-amplitude
oscillations. In this case the objective time derivatives can be regarded as identical
with the partial derivatives with respect to time and the usual complex number
formalism may be used. Then equation (6.144) becomes

tv = L00pdD −
∑

j

L0jαj ;

(Lj + p)αj = −L0jpdD;

(6.146)
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from which αj can be expressed and for the viscous stress tensor, an explicit ex-
pression is obtained:

tv =



L00 +
∑

j

L2
0j

Lj + p



 pdD. (6.147)

Let us consider, first, fluids for which tv = tD. If this is compared with equation
(3.16), it is seen that our model for this fluid is identical with the generalized
Maxwell body whose parameters are

1

µ0

= 0, 2η0 = L00;

2µi = L2
0j ; 2ηi =

L2
0j

Lj

.

(6.148)

(Equality 1/µ0 = 0 means that the spring of the 0-th Maxwell element is rigid, i.e.
this is a Newton element.) Thus, in general, we may say that the behavior of a
fluid model in small-amplitude oscillations can be described by a mechanical model
consisting of Newton-element and as many Maxwell-elements in parallel connec-
tion as is the number of necessary α-type dynamic variables for characterizing the
medium.

These results can readily be applied for solid bodies, taking into account only
correlation t = tv + te. On using the form of Hooke’s law given by equation (5.24),
the stress deviator may be obtained from equation (6.147) as

tD = 2µ(d − δ) +



L00 +
∑

j

L2
0j

Lj + p



 pdD. (6.149)

Hence the mechanical model is given by connecting a spring with parameter µ
parallel to a generalized Maxwell body.

Small changes in the volume do not significantly influence the above considera-
tions, but the deviatoric part of the stress tensor should be substituted for stress.
Simultaneously, the variation in volume and the trace of stress tensor should also be
provided for which the whole chain of thought can be repeated with scalar dynamic
parameters with the traces of tensors d̊ and tv. The equations thus obtained are
formally analogous to equation (6.149), but with scalar variables. The number of
dynamic variables and the values of parameters may, naturally, be different from
those in equation (6.149). In equations describing volume changes, there is always
an elastic term; thus, the mechanical models should always contain a spring in
parallel connection.

6.2.2. Shear flow of liquids. Let us now examine the behavior of liquids
described by equation (6.144) in the case of planar flow. The velocity field should
be given then by equation (6.82). In the case of specified velocity distributions, the
equations concerning the dynamic variables are solved individually; by inserting
their solution into the first equation, the stress is determined.

However, this is not the task in the majority of practical cases, but mostly we
look for velocity distribution in the knowledge of the stress field. In such cases the
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problem is much more complex. However, solution is made easier by the fact that
the third rows and third columns of matrices d̊ and ω contain only zero elements;
thus the third rows and columns of dynamic variables αj contain also only zero
elements as is seen from equations (6.144). This fact enables us to use the complex
formalism introduced in subsection 6.1.3. and generalized in 6.1.6. (Attention
should be called to the fact that tensor d has only small significance, since here the
reference configuration continuously changes as is usual for liquids.) The solutions
of the complex form of equations (6.144)

tv = L00d̊ −
∑

j

L0jαj ;

dαj

dt
+ 2iωαj = −L0jd̊ − Ljαj

(6.150)

will be dealt with only for stationary shear flow, when the material derivative of
dynamic variables with respect to time are zero. In this case, αj-s can easily
be expressed and upon their substitution into the first equation, the correlation
between stress and shear rate results in its complex form as

tv = L00

κ

2
+

1

2

∑

j

L2
0jκ

Lj + κi
; (6.151)

where the notations introduced in subsection 6.1.2. are used.
From equation (6.151) the viscometric functions can be obtained:

τ = L00

κ

2
+

1

2

∑

j

LjL
2
0j

L2
j + κ2

κ, σ1 = −σ2 =
1

2

∑

j

L2
0jκ

2

L2
j + κ2

. (6.152)

These viscometric functions can be applied, naturally, not only for stationary shear
flow, but for any viscometric flow, as well.

Though the viscometric functions thus calculated are directly suitable for prac-
tical application, cases may occur when the normal stress difference functions are
necessary for a particular material about which we do not know how many dynamic
variables are needed for characterizing them. The shear stress function is relatively
easy to measure, and the majority of viscometers used in laboratories is applicable
for this purpose. However, this is not true for the normal stress difference functions.
Then the following procedure may be applied. We determine the shear stress func-
tion from the measured data in a form corresponding to equation (6.152a). This
task is easy to perform by numerical methods elaborated on the basis of the con-
structive theory of functions. Thus σ1 and σ2 can be constructed from parameters
Lj and L2

0j .
However, there is another method feasible for this purpose. For its application,

let us rewrite equation (6.151) in a modified form:

tv =







L00 +
∑

j

L2
0j

Lj + 2iω







d̊ = η(p)κ. (6.153)
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Here we introduced again the complex variable p = 2iω and the complex viscosity
η(p) with which the viscometric functions stand in the following correlations:

τ = ℜη κ, σ1 = −σ2 = −ℑη κ. (6.154)

Notice that the complex viscosity is a regular function of complex variable p on
the closed right half plane whereas we are interested in its values only along the
imaginary axis. This fact provides a possibility of determining the imaginary part
of η(iκ) when knowing its real part. The method used is the Hilbert transformation
whose essence is the following:

Since η(p) is regular on the closed right half plane, for any real κ the singularity
of the function

f(p, κ) =
η(p) − η(iκ)

p − iκ
(6.155)

at p = iκ is removable. Therefore the contour of the integral of this function along
any curve lying in the closed right half-plane is zero, which keeps itself away from
p = iκ . By choosing the integration pathway (G) according to Figure 6.16,

;
Im p

Re p

iκ

R

r

G

Figure 6.16

we may write:

∮

S

η(p) − η(iκ)

p − iκ
dp =

κ−r
∫

−R

η(it) − η(iκ)

it − iκ
d(it)+

+

π
2

∫

−
π
2

η(iκ + reiϕ) − η(iκ)

reiϕ
d(reiϕ)+ (6.156)

+

R
∫

κ+r

η(it) − η(iκ)

it − iκ
d(it) +

−
π
2

∫

π
2

η(Reiϕ) − η(iκ)

Reiϕ − iκ
d(Reiϕ) = 0.
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Let us now evaluate the limit when r → 0 and R → ∞ (In what follows,

lim
ε→0





κ−ε
∫

−∞

...dt +

∞
∫

κ+ε

. . . dt





the so-called principal value of the integral will be denoted by
∫ ∞

−∞
. . . dt.)

∞
∫

−∞

η(it) − η(iκ)

it − iκ
d(it) + iπ

[

η(iκ) − η∞
]

= 0 (6.157)

where it has been utilized that limit

lim
p→∞

η(p) = η∞ (6.158)

exists and is finite and even real as seen from equation (6.153). Upon separating
the real and imaginary parts and utilizing that

∞
∫

−∞

dt

t − κ
= 0, (6.159)

we arrive at expressions

ℑη(iκ) =
1

π

∞
∫

−∞

ℜη(it)

t − κ
dt

and (6.160)

ℜη(iκ) = η∞ − 1

π

∞
∫

−∞

ℑη(it)

t − κ
dt

The first equation is suitable to determine the normal stress function if we know
the shear stress function. On the basis of equation (6.154), the omission of complex
notations gives

σ1 = −σ2 = −κ

π

∞
∫

−∞

τ(t)

t(t − κ)
dt

τ = η∞κ +
κ

π

∞
∫

−∞

σ1(t)

t(t − κ)
dt

(6.161)

It will be shown later that these equations hold even if not all the dynamic variables
are invariant under time inversion. Naturally, they cease to hold if non-linearities
similar to those described in subsection 6.1.8. appear.
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6.2.3. Several types of dynamic variables. It is not impossible in princi-
ple that part of the dynamic variables in equation (6.141) are even, and another
part of them is odd with respect to time inversion. In this case the differential
equations for the dynamic variables cannot be solved individually even if the veloc-
ity field is known. In these cases notation (6.142) loses its practicability, and the
thermodynamic forces and currents may be selected as follows:

X0 = d̊, Xj = −√
̺ξ′

j ;

J0 = tv; Jj =
√

̺ξ̊′

j ;
(6.162)

Linear laws are now the following:

tv = L00d̊ +
∑

j

L0jXj ,

−X̊k = Lk0d̊ +
∑

j

LkjXj ,
(6.163)

where the relation following from the constant volume and from equation (6.162)

Jj = −X̊j (6.164)

is utilized. Plane motions can be described also here by complex expressions, which,
for shear flow and arranging them for the unknown quantities, give

tv −
∑

j

L0jXj = L00d̊,

iκXk +
∑

j

LkjXj = −Lk0d̊.
(6.165)

These equations are linear with respect to the quantities tv and Xk Thus, on the
basis of Cramer’s rule, tv may be calculated from them. Since the right-hand sides
of all the equations are proportional to d̊, the result is

tv = 2η(iκ)d̊ = η(iκ)κ, (6.166)

where 2η(iκ) is the ratio of two determinants. As on the basis of the stability of
thermodynamic equilibrium, it is clear that the complex function η(p) cannot have
either a pole or a zero on the closed right half-plane, correlations (6.161) between
viscometric functions can be derived here, too. However, for the particular form of
these functions, no general equation similar to equation (6.152) can be given; they
will be different from case to case.

The attention of readers familiar with the theory of electric networks is called to
the analogy existing between functions η(iκ) and the impedances of electric circuits.
By introducing analogies

tv → U, η → Z, κ → I, (6.167)
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we may say that the viscometric functions according to correspondences

ℜU → τ, ℑU → −σ1 = σ2 (6.168)

may show the same diversity as the transfer characteristics of electric two-poles.
The other features of this electric analogy are also interesting, since according to
equation (6.89), the absolute value of the complex stress provides the eigenvalues of
the viscous stress tensor, whereas its phase gives the spatial directions of principal
stresses. Another reason why this electric analogy is useful is that in this way the
methods applied in the theory of linear networks may be directly employed.

6.2.4. Analogy with electric two-poles. Before elaborating the details of
this analogy, let us notice that upon examining either small-amplitude oscillations
or stationary shear flow, equations (6.163) may be rewritten in the form

tv = L00d̊ +
∑

j

L0jXj ;

−pXk = Lk0d̊ +
∑

j

LkjXj ;
(6.169)

where only the meaning of the complex variable is different: for oscillations it
is the complex frequency; for shear flow it is the product of shear rate and the
imaginary unit. In writing the equations, we preserve the tensorial notation, since
for oscillations tv, d̊ and Xj are tensors with complex components; whereas for
shear flow, they are complex numbers. However, this difference does not influence
the formal way of calculations, thus the two cases are treated together.

In calculating tv from equations (6.169) we obtain that

tv = 2η(p)d̊, (6.170)

where 2η(p) is the ratio of two determinants. Since the stability of thermodynamic
equilibrium η(p) is a positive real function. According to the theorem of Bott and
Duffin [12], a two-pole consisting of capacitors, resistances and inductances can
always be found whose impedance is this very function. This two-pole may be
regarded as the electric model of the medium.

Let us now analyze in detail the correlation between the electrical and mechanical
models. The mechanical model of the body described by equations (6.169) —
though it is yet to be proved — consists of three types of elements. These are the
linear spring, the dashpot and the inertia element introduced in subsection 6.1.1.
Electric two-poles consist also of three types of elements: capacitors, resistors and
inductors. Let us assume the analogies according to the arrangement:
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<*** +'(
σ = µε

σ = ηε̇

σ = Θε̈ =#%! U = 1

C
Q

U = RQ̇

U = LQ̈

It seems that analogy

U ↔ σ Q ↔ ε

and, from this, analogies

µ ↔ 1

C
η ↔ R Θ ↔ L

are perfect. However, the question is not so simple. Let us examine how the partial
currents, partial potentials and partial deformations correlate in the case of the
serial or parallel connection of two elements:

Connection U Q σ ε
Serial U = U1 + U2 Q = Q1 = Q2 σ = σ1 = σ2 ε = ε1 + ε2

Parallel U = U1 = U2 Q = Q1 + Q2 σ = σ1 + σ2 ε = ε1 = ε2

It is apparent from the table that analogies only exist for the parallel connections
in the mechanical model and the serial connections of the electric model and vice
versa. However, due to the dual nature of electric networks, this does not cause
any difficulty. We do not deal with the analogies of more complex networks, as
they have not yet been applied for rheological problems. We provide two simpler
(in Figure 6.17) and two more complex (in Figure 6.18) equivalent electric and
mechanical models, as examples.>( (* + ←→ ?#%!

Figure 6.17

It is seen from the model that the mechanical model can be derived from the elec-
tric one as follows: Let us close the electric two-pole by a preferred edge. Construct
the dual graph and place the analogous mechanical elements onto its appropriate
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Figure 6.18

edges and finally, omit the preferred edge, fix its one end and put a load on the
other. This procedure can be carried out in the reverse way, too.

The electric analogy may be generalized also for mechanical models describing
plastic behavior and, thus, containing St. Venant-elements as well, only an idealized
glow-discharge lamp or two oppositely connected Zener diodes should be introduced
as analogies to the St. Venant-elements (Figure 6.19)B)*

σ = ±σ0

←→ C
U = ±U0

Figure 6.19

The main advantage of the above method is that the results of the theory of
electric networks are easy to be transferred to mechanical problems.

6.2.5. Streaming birefringence. We turn back now to the case of pure α
-type variables. The elementary theory of streaming birefringence outlined in sub-
section 6.1.7. can readily be generalized, only instead of equation (6.93), expression

ε = ε(u, v)δ +
∑

j

ε∗j (u, v)αj (6.171)

should be written. In the case of shear flow, the complex forms of αj-s can be
calculated from equation (6.150) and substituted into the complex form of the
derivatoric part of tensor ε. Thus we arrive at the formula

εD =
∑

j

ε∗jαj = −
∑

j

ε∗jL0j

Lj + κi

κ

2
(6.172)

If we introduce quantities

ε∗∗j = ε∗j
L0j

2Lj

; τj =
1

Lj

(6.173)

the result thus obtained is

εD =
∑

j

ε∗∗j κ

1 + iτjκ
(6.174)
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which is analogous to equation (6.97). The calculation of birefringence is now more
complicated than in the case of equation (6.98), but it is feasible for particular
cases.

6.2.6. Matrix representation of constitutive equations. If calculations
have to be made by using several dynamic variables, matrices seem to be very useful
tools for writing linear laws in a concise, symbolic way.

For the formulation of equation (6.163) in a matrix form, array the thermody-
namic forces Xj — which are also dynamic variables — into column matrices. The
matrix obtained — which is a hypermatrix, in fact, denoted by X — contains tensor
Xj in its j-th row. This matrix can be regarded as a second-order tensor whose
components are column matrices. Correspondingly, the matrix form of equations
(6.163) is:

tv = L00d̊ + L01X ,

−X̊ = L10d̊ + L11X ,
(6.175)

where L01 is the row matrix built of coefficients L0j ; L10 is the column matrix built
of coefficients Lk0; whereas the elements of quadratic matrix L11 are coefficients
Lkj .

The use of matrices results in an especially concise form of the complex formal-
ism. Thus the matrix forms of complex equation (6.165) are:

tv = L00d̊ + L01X ,

(iκδ + L11)X = −L10d̊,
(6.176)

where δ is the n × n unit matrix and n the number of complex variables. The
correlation between stress and the deformation rate is easy to establish. We express,
namely, X from the second equation and insert it into the first one. From this,

tv = L00d̊ − L01(L11 + iκδ)−1L10d̊. (6.177)

results. By using equality

(L11 + iκδ)−1(L11 − iκδ)−1 = (L2
11 + κ2δ)−1, (6.178)

correlation
tv = L00d̊ − L01(L2

11 + κ2δ)−1(L11 − iκδ)L10d̊ (6.179)

is obtained. Since for shear flow d̊ = κ/2 and the real part of tv is the shear stress
function whereas its imaginary part is the (−1)-fold of normal stress function σ1,
the separation of the real and imaginary parts leads to expressions

τ(κ) =
1

2

[

L00 − L01(L2
11 + κ2δ)−1L11L10

]

κ.
and (6.180)

σ1(κ) = −1

2

[

L01(L2
11 + κ2δ)−1L10

]

κ2

for the viscometric functions. Provided that only α-type variables are involved in
our equations, in canonical representation L11 is a diagonal matrix and Onsager’s
reciprocal relations take the form

L01 = −LT
10 (6.181)

By utilizing these, our equations transform into equations (6.152).
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6.2.7. Plastic behavior. For studying the plastic properties of bodies char-
acterized by several dynamic variables, we start from the arrangement described
in subsection 6.1.5. The viscous stress tensor is given in this case also by equation
(6.45), whereas the velocity gradient is sought in a form corresponding to equation

(6.46). Based on this, ω and d̊ can be given in the form of equation (6.47). It is not

necessary now to calculate tensors tv and ˚̊d , as dynamic variables are not worth
being eliminated from equations (6.175) now. However, we shall need the explicit

form of X̊ which in the stationary case is

X̊ = Xω − ωX =

=







2ω3X12 ω1X13 − ω3(X11 −X22) ω3X23 − ω1X12

ω1X13 − ω3(X11 −X22) 2ω1X23 − 2ω3X12 ω1(X33 −X22) − ω3X13

ω3X23 − ω1X12 ω1(X33 −X22) − ω3X13 −2ω1X23







(6.182)

Concerning the possible solutions of equation (6.175), here, too, more cases may be
distinguished; but now case 1 will be broken into two subcases.

In subcase 1a, let ~ω be equal to zero. Then expressing X from the second
equation and inserting it into the first one, we obtain

X = −L−1

11 L10d̊

tv = (L00 − L01L−1

11 L10)d̊
(6.183)

By introducing notation
L00 − L01L−1

11 L10 = 2η, (6.184)

we arrive at

d̊ =
σ

6η





2 0 0
0 −1 0
0 0 −1



 (6.185)

In subcase 1b let ω3 = 0, but ω1 6= 0. The solution of the equations remains
unchanged, since X̊ remains zero as it can be calculated from equations (6.185),
(6.183) and (6.182). Hence, case 1 corresponds to a linear, viscous flow also for
media characterizable with several dynamic variables. This flow is identical with
the phenomenon of creep for plastic media.

By analogy to the behavior of media characterizable by one dynamic variable,
the stationary solution in which ω3 6= 0 but ω1 = 0 is considered case 2. Case 3 is
when neither ω3 = 0 nor ω1 = 0. In case 2, equations are written first for tensor
components (1,3) and (2,3):

0 = L01X13 −ω3X23 = L11X13

0 = L00d̊23 + L01X23; ω3X13 = L10d̊23 + L11X23

(6.186)

The expression of X23 from the second equation and its substitution into the third
and fourth equations give

0 = L00d̊23 + L01

(

− 1

ω3

L11X13

)

,

ω3X13 = L10d̊23 + L11

(

− 1

ω3

L11X13

)

.

(6.187)
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Expressing now X13 from the second equation and inserting it into the first one we
arrive at

0 =
[

L00 − L01(L2
11 + ω2

3δ)−1L11L10

]

d̊23; (6.188)

where the coefficient of d̊23 depends on ω3 in the same way as the quantity in
brackets in the shear stress function in equation (6.180). From this it follows that

d̊23 = 0, as τ(κ) cannot be zero and thus the coefficients of d̊23 cannot be zero either
in equation (6.188) if ω3 6= 0. The results from the second equation of (6.187) is
that X13 = 0; and from the second equation of (6.186) X23 = 0.

Examine now position (3,3). Then

−σ

3
= L00d̊33 + L01X33;

0 = L10d̊33 + L11X33;
(6.189)

whence for X33 and d̊33

−σ

3
= (L00 − L01L−1

11 L10)d̊33 = 2ηd̊33;

d̊33 = − σ

6η
;

X33 =
σ

6η
L−1

11 L10

(6.190)

is obtained. Let us now write the equation for tensor components with subscripts
(1,1) and (1,2):

2σ

3
= L00d̊11 + L01X11;

−2ω3X12 = L10d̊11 + L11X11

0 = −L00ω3 + L01X12

ω3(2X11 + X33) = −L10ω3 + L11X12

(6.191)

These equations are quite difficult to solve. However, the difficulties can be circum-
vented if we regard σ as unknown, instead of ω3. In this case the equations are linear
and their solution for d̊11 and σ provides the correlation between these variables
in a parametric form with ω3 as a parameter. By expressing X12 from the second
equation and substituting it into the others, the first one remains unchanged; and
instead of the third and fourth, we may write

0 = 2L00ω
2
3 + L01L10d̊11 + L01L11X11

0 = 4ω2
3X11 + 2ω2

3X33 + 2L10ω
2
3 + L11L10d̊11 + L2

11X11

(6.192)

The expression of X11 and its insertion into the first equation as well as into equation
(6.191b) provides the following equations for σ and d̊11;

σ

2
+ (L00 − a1)

(

σ

12η
− d̊11

)

= 2ω2
3a0,

2a0

(

σ

12η
− d̊11

)

= L00 − a1,

(6.193)
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where notations
a0 = L01(L2

11 + 4ω2
3δ)−1L10

a1 = L01L11(L2
11 + 4ω2

3δ)−1L10

(6.194)

have been introduced. It should be noted that functions a0 and a1 are in a close
relationship with the viscometric functions (6.180). Let us now introduce notation

κ = 2ω3 (6.195)

into equations (6.194); then a simple calculation provides for the viscometric func-
tions the following expressions:

τ(κ) =
κ[L00 − a1(κ)]

2
; σ1 = −a0(κ)κ2

2
(6.196)

By preserving notation (6.195), equations (6.193) take the following form:

σ

2
+

2τ(κ)

κ

[

σ

12η
− d̊11

]

= σ1(κ),

σ

12η
− d̊11 = − κτ(κ)

2σ1(κ)
.

(6.197)

From these equations σ and d̊11 may be determined as functions of parameter κ:

σ = 2
σ1(κ)2 + τ(κ)2

σ1(κ)
,

d̊11 =
σ1(κ)2 + τ(κ)2 + 3ηκτ(κ)

6ησ1(κ)
.

(6.198)

The correlation between tensile stress and d̊11 is, in general, non-linear. On deter-
mining the critical tensile stress from equation (6.198), we obtain

σcrit = 2 lim
κ→0

τ(κ)2

σ1(κ)
. (6.199)

By calculating the limit for d̊11 when κ → 0, we see that the limiting point of
correlation (6.198) describing section 2 satisfies also the linear correlation (6.185)
valid for creep. Calculations for case 3 will not be carried out because they would
be very lengthy.

Examine now how far case 1a is stable. For components (1,2) of equations (6.175)
for cases of small ω3 and small deviations from equation (6.185), we arrive at

0 = −L00ω3 + L01X12;

−Ẋ12 − ω3L−1

11 L10

σ

2η
= −L10ω3 − L11X12;

(6.200)

in which we utilized equations (6.183) and (6.185) as well. The differential equation
obtained is linear in X12 and ω3. Its characteristic equation, by substitution

Ẋ12 = pX12 (6.201)
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is as follows:
∣

∣

∣

∣

−L00 L01

−L10 + L−1

11 L10
σ
2η

L11 + pδ

∣

∣

∣

∣

= 0. (6.202)

Critical stress is obtained by substitution p = 0. In calculations, by multiplying
the characteristic equation from the left by the determinant of the hypermatrix

[

1 0
0 L−1

11

]

and utilizing the multiplication rule of determinants, we may write that

∣

∣

∣

∣

L00 L01

L−1

11 L10 − L−2

11 L10
σcrit

2η
δ

∣

∣

∣

∣

= 0 (6.203)

The expansion of this determinant results in

L00 − L01L−1

11 L10 +
σcrit

2η
L01L−2

11 L10 = 0 (6.204)

whence

σcrit = − (2η)2

L01L−2

11 L10

. (6.205)

The form of equation (6.180) for viscometric functions convinces us that the critical
tensile stress obtained is identical with that given by equation (6.199). This means
that at a certain critical stress, creep loses its stability and plastic flow starts.
Naturally, these considerations do not hold for any medium: since σcrit < 0 is also
possible and in this case there is no creep, and case 2 cannot be called plastic flow.
However, this latter case can only exist if β-type variables also occur among the
dynamic variables.

Finally we note that in our previous calculations we have assumed that the
root of characteristic equation (6.202) which is closest to the imaginary axis is a
real number. This hypothesis is always true for cases where only α-type dynamic
variables are present.

Dd̊11

σσcrit

Figure 6.20
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Ed̊11

σσcrit

a b

Figure 6.21

Figure 6.20 illustrates the first two sections of the correlation between tensile
stress and the relative rate of stretching for a given medium characterized by two
α-type dynamic variables. It should be noted that for other value of parameters it
may occur that the break in the curve or its subsequent curvature is not so apparent
(Figure 6.21). Finally, let us investigate the plastic behavior in plane flow. Similar
to stretching along a single axis, some kinematic restrictions have to be made for
the flow pattern. Let us take the axes of the coordinate system so that the matrix
of the stress tensor be

t =





σ 0 0
0 −σ 0
0 0 0



 , (6.206)

i.e. motion should occur in the x1x2 plane. Let us assume about the flow pattern
that it does not change the direction of vector

e = cos α e1 + sin α e2 (6.207)

Based on this, we may write:





d̊11 d̊12 − ω3 0
d̊12 + ω3 −d̊11 0

0 0 0









cos α
sinα

0



 = λ





cos α
sin α

0



 (6.208)

whence

tanα =
(d̊12 + ω3) cos α − d̊11 sin α

d̊11 cos α + (d̊12 − ω3) sin α
(6.209)

follows. From this, a simple calculation gives correlation

ω3 = d̊11 sin 2α − d̊12 cos 2α. (6.210)

In the case of planar flow, equations (6.175) may be rewritten into the complex
form by using the formalism given in subsection 6.1.6.:

tv = L00d̊ + L01X ;

2ω3iX = L10d̊ + L11X
(6.211)
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The correlation between stress and the deformation rate can be obtained by elimi-
nating X :

tv = L00d̊ − L01(L11 − 2ω3iδ)
−1L10d̊ (6.212)

which, after removing i =
√
−1 from the reciprocal matrix, becomes

t =
[

L00 − L01(L2
11 + 4ω2

3δ)−1(L11 + 2ω3iδ)L10

]

d̊ (6.213)

The correlation between the right side of this equation and the viscometric functions
can be established by introducing the quantity

κ = −2ω3 (6.214)

and utilizing the form of viscometric functions given by equation (6.180). Then,
instead of equation (6.213), the very illustrative form of

tv =

(

2τ

κ
− i

2σ1

κ

)

d̊ (6.215)

can be written. Let us now consider the complex form of stress, t = iσ, and rewrite
correlation (6.210) by substituting equation (6.214). In this case

−iσ =
2

κ
(τ − iσ1)(d̊12 − id̊11),

−κ

2
= d̊11 sin 2α − d̊12 cos 2α

(6.216)

may be written, from where, d̊11, d̊12 and κ can be determined. A more convenient
solution is to regard the quantities , d̊11 and d̊12 as functions of κ:

d̊12 =
σ1

τ
d̊11;

σ = 2
σ2

1 + τ2

κτ
d̊11

d̊11 =
κ/2

σ1
τ cos 2α − sin 2α

(6.217)

When analyzing these equations we find that for κ → 0, d̊11, d̊12, and σ also tend
to zero except for the case when sin 2α = 0. Then, the equation for d̊11 has the
form:

d̊11 =
κτ

2σ1

(6.218)

which has a finite limit for κ → 0. Upon substituting this into the second equation,
we obtain

σ =
σ2

1 + τ2

σ1

(6.219)

On comparing this with equation (6.198) for stretching along a single axis, it can
be seen that in the limiting case κ → 0 plastic flow starts in both stretching along
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a single axis and planar flow when the difference between the largest and smallest
principal stresses reaches the critical value σ∗ which is given by formula

σ∗ = lim
κ→0

2
σ2

1 + τ2

σ1

= lim
κ→0

2τ2

σ1

(6.220)

Summarizing, we can establish that the correlations obtained show unequivocally
that the results derived by the thermodynamic theory are consistent with the yield
conditions tried and proved in practice.

6.3. Some limit cases.

It has already been mentioned in subsection 6.1.8. that in the general case the
coefficients in linear laws may depend on local state parameters, which are often
called quasi-linear in the literature. However, the case of dynamic variables defined
here ensures wide possibilities for non-linearity, since thermodynamic forces and
local state parameters cannot be sharply separated.

Let us briefly analyze now what possibilities are allowed by Onsager’s theory. For
simplicity, we restrict our study for a single dynamic variable. The new dynamic
variable has been reintroduced as it has been made in equations (6.142) and (6.143),
together with thermodynamic forces and currents. Linear laws will be written now
in a more general form than they are given in equation (6.144). By utilizing the
isotropic nature of the medium and the canonical nature of the dynamic variable,
we obtain:

tv = L00d̊ + L′

00(α, d̊) − L01α − L′

01(α, α),

α̊ = −L01d̊ − L′

01(α, d̊) − L1α,
(6.221)

where L′
00(α, d̊) and L′

01(α, d̊) are isotropic tensor functions of α and d̊. These

functions are linear for the components of d̊ and may depend almost arbitrarily on
α. The study of these functions is rather difficult. Therefore we deal only with the
case where L′

01(α, d̊) = 0. Then, the second equation is simplified and becomes a
linear one.

Let us first suppose that L1 is very large. Then the relaxation of the dynamic
variable is relatively fast and we may say that the dynamic variable follows the
changes of d̊. In this case, from equation (6.221b), it follows that

α = −L01

L11

d̊ (6.222)

whose substitution into equation (6.221a) shows that tv depends on d̊ in an isotropic
way; i.e., the general theory for processes that are not too fast (the dynamic variable

cannot follow very fast processes) gives room for almost any tv(d̊) function which is
approximately linear for small deformation rate. As a second case, let us examine
how the medium behaves for small L1 by assuming further that L′

01 = 0. In this

case the dynamic variable relaxes only slowly; its changes are mainly due to d̊. If,
in addition, the value of L01 in the first equation of (6.221) can be also neglected, it
can be seen that the liquid is viscous, but its viscosity depends significantly on α,
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it may even become anisotropic. If we consider only media which do not become
anisotropic, then equation (6.221) simplifies to approximation

tv = L00(α)d̊

α̊ = −L01d̊ − L1α
(6.223)

from which deviation is only observed if d̊ ≈ 0 and the term −L01α neglected so far
becomes predominant. From these relations the following conclusions can be drawn:
If the medium has been at rest for a long period, the value of the dynamic variable
is zero. By setting the medium into motion, the value of the dynamic variable
changes, which results in a change of the viscosity. Due to the slow relaxation of
the dynamic variable, viscosity returns to its initial value only after a long rest.

Since function L00(α) may have different forms, this formalism allows a wide
variety of thixotropy and reopexy.

Finally, let us analyze the case where linear laws hold in their form described by
equation (6.144), but L00 is zero and there is only a single dynamic variable. Then

tv = −L01α,

α̊ = −L01d̊ − L1α,
(6.224)

By eliminating from these equations, expression

t̊v + L1t
v = L2

01d̊ (6.225)

results, which is the differential equation of a Maxwell-fluid.



CHAPTER VII

ELECTRIC POLARIZATION IN FLOWING MEDIA

This chapter deals with two moments of interaction between electric polariza-
tion and mechanical motion. Mechanical stress caused by electric polarization will
be treated first; then the basis for the theory of streaming birefringence will be
outlined. No phenomena concerning ponderomotoric force will be discussed. First,
the thermodynamic theory of electric polarization will be dealt with.

7.1. Thermodynamics of electric polarization.

Let us start with an insulator whose electric polarization changes, but which
does not move. The equilibrium states of such a medium are determined by the
internal energy and the electric dipole moment. According to equation (4.42) when
local equilibrium was assumed, the density of entropy production is :

σs =

[

1

T
(E + v × B) +

∂s0

∂p

]

̺̊p, (7.1)

which suggests thermodynamic force and current

J = ̺̊p, X =
1

T
(E + v × B) +

∂s0

∂p
(7.2)

In a medium at rest, the condition for equilibrium is

X =
1

T
E +

∂s0

∂p
= 0, (7.3)

from which the physical meaning of the derivative of the entropy with respect to
the dipole moment is obtained:

∂s0

∂p
= −

1

T
Ee(u,p). (7.4)

Here Ee(u,p) means the strength of the electric field at an equilibrium belonging
to the values u and p. Upon using the symbols of equation (7.4) for Tσs, we obtain

Tσs = ̺̊p(E + v × B − Ee). (7.5)

Since we treat isothermal — or nearly isothermal — processes, it is expedient to
use the energy representation with the force

X′ = E + v × B − Ee (7.6)
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In this case, the linear law has the form

̺̊p = L(E + v × B − Ee), (7.7)

where L is Onsager’s conductivity coefficient.
If the medium is not moving and, thus, its density is constant, equation (7.7)

may be written in the simpler form

Ṗ = L(E − Ee), (7.8)

where P is the electric polarization as defined in equation (2.28).
If we restrict ourselves to polarization small enough and accept the linear corre-

lation
P = ε0χeE

e (7.9)

usually applied in electrodynamics, then, for harmonic processes, we get

iωP = L

(

E −
P

ε0χe

)

(7.10)

and thereby obtain the dispersion relation

P =
ε0χe

1 + i ε0χeω

L

E (7.11)

According to the above equation, polarization can not follow very high frequencies.
(With increasing frequency, the absolute value of the denominator increases to
infinity.) This may be regarded as correct if the frequency of X-rays is considered
very high, though in this case the dispersion relationship (7.11) provides a too simple
spectrum which does not occur in nature at all. On the other hand, if the coefficient
falls into the interval of the wavenumber of X-rays, at frequencies corresponding
to mechanical motion, equation (7.11) can be regarded as equal to equation (7.9).
Hence the conclusion may be drawn that for describing the theoretical relationship
concerning the polarization of real media, dynamic variables should be introduced.

If we think of the complex structure of optical and microwave spectra, it should
be supposed that for their description several dynamic variables are needed. They
can be of both α- and β-type. Fortunately, the complicated structure of spectra
appears at frequencies very high from the viewpoint of mechanical motion; and,
thus, they do not have to be dealt with since we do not want to describe spectra
which is done better by other theories. Based on this, we shall study media whose
behavior can be described satisfactorily by a few variables in the region of low
frequencies. The essence of the method will be illustrated by the example of media
described by a single dynamic variable. Generalization for more dynamic variables
can be carried out similarly as in section 6.2.

For a medium which can be described by an α-type dynamic variable, the form
of the energy dissipation function, instead of equation (7.5), becomes

Tσs = ̺̊p(E + v × B − Ee) − ~α̊~α, (7.12)
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where, like in equation (6.9), the dynamic variable includes also density and temper-
ature. The dynamic variable is now a vector, since no other quantity has dynamic
coupling with polarization in a isotropic material. For writing Onsager’s linear law,
it is expedient to choose ̺̊p and ~α as independent variables

E + v × B − Ee = h00̺̊p − h01~α,

~̊α = −h01̺̊p − h11~α.
(7.13)

Here the Onsager coefficients are written as h00, h01 and h11, respectively, corre-
sponding to the hybrid representation.

In a medium at rest and by accepting the validity of equation (7.9) for sinusoidal
phenomena, the dispersion relation is obtained in the following form:

p =
(h11 + iω)E

(

ih00ω + 1

ε0χe

)

(h11 + iω) + iωh2

01

. (7.14)

This equation also shows that at high frequencies polarization cannot follow the
electric field (the denominator is a second order polynomial of ω , whereas the
numerator is linear in ω). However, if h00 is very small, this problem appears only
at very high frequencies. This means that in the frequency ranges corresponding to
mechanical phenomena, a good approximation is that h00 equals zero. With this
simplification, equation (7.13) transforms into expression

E + v × B − Ee = −h01~α,

~̊α = −h01̺̊p − h11~α
(7.15)

whereas dispersion relation (7.14) becomes

P = ε0

(

χ∞ +
χe − χ∞

1 + iωτe

)

E (7.16)

with the definitions

χ∞ =
χe

1 + ε0χeh
2

01

, τe =
1 + ε0χeh

2

01

h11

(7.17)

Correlation (7.16) is identical with the Debye relaxation in which χ∞ is the sus-
ceptibility belonging to the so-called displacement polarization, whereas χe − χ∞

belongs to orientation polarization. Thus the equation obtained describes well the
electric polarization of a medium containing dipole molecules in the range of low fre-
quencies, i.e. at frequencies which can be followed by the displacement polarization
of atoms and molecules.

It is obvious that for the description of media containing different dipoles, more
α-type vectors have to be used. Based on the knowledge of the structure of spectra
at higher frequencies, it is readily seen that for their characterization more α- and
β-type dynamic variables should be taken into account. Thus, though the structure
of spectra does not contradict thermodynamic conclusions, their thermodynamic
description is tedious.
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7.2. Flow of dielectrics in an electromagnetic field.

Let us now proceed to a detailed examination of the mechanical motion of the
medium. For simplicity’s sake, we restrict our study to motions leaving the volume
of the medium unchanged. We assumed about the medium that it has no internal
momentum and the couple stress is also zero. In this case the balance of internal
momentum (2.45) allows the conclusion that the electromagnetic field causes a
torque on media characterized by equation (7.15); thus, Cauchy’s stress tensor is
not symmetric any more. However, it is also true that, as will be shown later,
the electromagnetic field exerts an influence only on the antisymmetric part of the
stress tensor in the case of linear order and isotropic medium. Thus, it is expedient
to split the stress tensor into three parts:

t = t
e + t

v + t
a, (7.18)

where te is the equilibrium stress tensor,
tv the viscous stress tensor, which remains symmetric,
ta the antisymmetric part of the stress tensor.

As there is no coupling between a vector and a second order tensor in an isotropic
medium, for the determination of tv, equation (6.144) remains valid or, for a single
dynamic variable of second order tensor, equation (6.10) holds. On the other hand,
the equilibrium stress is determined, also in this case, by the state parameters, but
here the specific dipole moment has also to be considered. Thus the determina-
tion of te is a task of thermostatics. The actual form of function te(T , d, p) or
the equilibrium entropy function se(u, d,p) reflects the phenomena of piezoelectric-
ity and electrostriction. However, these phenomena belong to the phenomena of
thermostatics, and, they will not be treated here.

What remains to be done is to determine the antisymmetric component of stress
ta. Before doing this, equation (7.15) is transformed so that instead of variable ~α

the quantity

P′ = P − ε0χ∞(E + v × B) (7.19)

is introduced. A simple calculation leads to

τeP̊
′ + P′ = ε0(χe − ξ∞)(E + v × B). (7.20)

Now we can proceed with the determination of the antisymmetric component of the
stress tensor. Utilizing that M = 0, li = 0 and Π = 0 and by combining equation
(2.45) and (2.50), we arrive at

w(t) = −
1

2
̺m =

1

2
(E + v × B) × P. (7.21)

By a translation from the vector invariant to tensor ta and taking also equation
(7.19) into account, we obtain

t
a =

1

2
[P′ ◦ (E + v × B) − (E + v × B) ◦ P′] (7.22)
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!
x2

x1

v

Figure 7.1
Velocity distribution
in simple shear flow.

which, together with equation (7.20), may be regarded as the equation system
describing our problem.

As an application, let us study the stationary shear flow of a polar newtonian
liquid in the presence of static electric and magnetic fields. In this case, the velocity
field is determined by equation (6.23) (Figure 7.1), and the meaning of d and ω

are given by equation (6.24). First, P′ will be determined from equation (7.20):

−τeωP′ + P′ = ε0(χe − χ∞)(E + v × B), (7.23)

from which
P′ = ε0(χe − χ∞)(δ − τeω)−1(E + v × B). (7.24)

The inverse tensor in this equation may be rewritten by using equation (6.24). It
becomes

(δ − τeω)−1 =
1

2
δ +

1

2





cos ϑ sin ϑ 0
− sinϑ cos ϑ 0

0 0 1



 =
1

2
δ +

1

2
Θ (7.25)

where, for brevity substitution

τeκ

2
= tan

ϑ

2
(7.26)

has been introduced. Now P′ is substituted into equation (7.22). Then

t
a =

1

4
ε0(χe − χ∞) {Θ [(E + v × B) ◦ (E + v × B)]

− [(E + v × B) ◦ (E + v × B)]ΘT
}

, (7.27)

is obtained from which the components of ta can be calculated:

ta
12

=
1

4
ε0(χe − χ∞) sin ϑ

[

E2

1
+ (E2 − vB3)

2
]

,

ta
13

=
1

4
ε0(χe − χ∞)(E3 + vB2) [sin ϑ(E2 − vB3) − E1(1 − cos ϑ)] ,

ta
23

=
1

4
ε0(χe − χ∞)(E3 + vB2) [(E2 − vB3)(1 − cos ϑ) + sinϑE1]

(7.28)
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On comparing these equations with Cauchy’s equation of motion, it is obvious that
no simple shear flow may exist in a magnetic field, as v depends on place. Thus,
in magnetic fields, our results must be revalued. The velocity field is

v1 = v(x2); v2 = v3 = 0 (7.29)

instead of by equation (6.23), and the quantity

κ =
dv1

dx2

(7.30)

is expedient to be introduced. In this case, equation (7.28) remains valid, and it
may be used for determining function v(x2), which is, however, a difficult task.

Let us now examine what contribution is made by electric polarization to shear
stress in a case where no magnetic field is present. Based on equations (7.28) and
(7.26), for ta

12
the following equation may be written:

ta
12

=
1

4
ε0(χe − χ∞)

τeκ

1 +
(

τeκ
2

)2
(E2

1
+ E2

2
), (7.31)

which means that for maintaining shear flow in an electric field such an excess of
shear stress is needed.

Our equations become much simpler if we consider that relaxation time τe of
electric polarization is relatively short; hence, in shear velocities of practical impor-
tance τeκ ≪ 1. Then instead of equation (7.26),

ϑ = τeκ (7.32)

may be written; and in equation (7.28), substitutions sinϑ = ϑ , cos ϑ = 1 may be
used:

ta
12

=
1

4
ε0(χe − χ∞)(E2

1
+ E2

2
)τeκ,

ta
13

=
1

4
ε0(χe − χ∞)E3E2τeκ,

ta
23

=
1

4
ε0(χe − χ∞)E3E1τeκ,

(7.33)

"
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x1

Figure 7.2
Velocity distribution

between parallel walls.
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Let us apply these equations for a flow on a channel where the velocity field is
described by equation (7.29) (Figure 7.2). From Cauchy’s equation of motion, the
stationary case is represented by

grad p = η∆v + Div t
a, (7.34)

where it is taken into account that the equilibrium and the viscous stress is not
influenced by polarization. From the detailed form of equation (7.34), for individual
components

∂p

∂x1

=

[

η +
1

4
ε0(χe − χ∞)τe(E

2

1
+ E2

2

]

d2v

dx2
,

∂p

∂x2

= 0

∂p

∂x3

=
1

4
ε0(χe − χ∞)τeE3E1

d2v

dx2

,

(7.35)

it is seen that the flow direction between two parallel planes does not coincide with
that of pressure drop, but it forms an angle with it which can be calculated from
the equations. The power needed for maintaining the flow is provided by the first
equation which may be interpreted so that the viscosity of the fluid is apparently
increased. This increment is

ηe1 =
1

4
ε0(χe − χ∞)τe(E

2

1
+ E2

2
), (7.36)

and it may be called electroviscosity.
So far we presumed a time-independent electric field. Mechanical stress occurring

as a consequence of such fields depends quadratically on the strength of the elec-
tric field; thus it may be expected that in quasi-stationary fields, important from
the viewpoint of AC experimental techniques, similar effects are generated. For
studying this problem, let us take electric and magnetic field strengths as harmonic
functions of time:

E = E0 exp(iωct), B = B0 exp(iωct) (7.37)

and use the usual complex formalism. If we assume that the convective time deriva-
tives are zero, then instead of equation (7.20) the following algebraic equation is
obtained:

−τeωP′ + (1 + iτeωc)P
′ = ε0(χe − χ∞)(E + v × B) (7.38)

which, after dividing it by (1 + iτeωc), transforms into

−
τe

1 + iτeωc

ωP′ + P′ =
ε0(χe − χ∞)

1 + iτeωc

(E + v × B) (7.39)

This equation is similar to equation (7.24), only instead of τe and (χe − χ∞),

complex numbers τe
1 + iτeωc

, and
χe − χ∞

1 + iτeωc
should be substituted. Upon assuming

that the components of τe~ω
1 + iτeωc

are small, P′ may be expressed as

P′ =
ε0(χe − χ∞)

1 + iτeωc

(

δ +
τe

1 + iτeωc

ω

)

(E + v × B). (7.40)
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Since the only factor producing torque is the component of polarization perpen-
dicular to (E + v × B), by omitting the parallel component from P′ we arrive
at

P⊥ =
ε0(χe − χ∞)τe

(1 + iτeωc)2
ω(E + v × B). (7.41)

In calculating mechanical stress, P⊥ should be substituted into equation (7.22);
but with care as equation (7.22) has non-linear terms. A result is relatively easy to
achieve if the aim is to calculate an average of mechanical stress in time. Then, the
complex denominator in the coefficient in equation (7.41) means that the component
P⊥ of polarization is delayed relative to the electric field and the phase of this delay
is

tan
ϕ

2
= τeωc, (7.42)

which can be readily calculated from equation (7.41).

The time average of the antisymmetric component of the mechanical stress tensor
can be determined similarly as the AC power, on the basis of equation (7.22):

< t
a >=

1

2
{P⊥rms ◦ (Erms + v × Brms) − (Erms + v × Brms) ◦ P⊥rms} cos ϕ,

(7.43)
where quantities marked by subscript “rms” mean effective values. The effective
value of P⊥ can be calculated from equation (7.41) in a direct way:

P⊥rms =
ε0(χe − χ∞)τe

1 + τ2
e ω2

c

ω(Erms + v × Brms). (7.44)

For shear flow if no magnetic field is involved, the stress components are

< ta
12

> =
1

4
ε0(χe − χ∞)

1 − τ2

e ω2

c

(1 + τ2
e ω2

c )2
(E2

1rms
+ E2

2rms
)τeκ,

< ta
13

> =
1

4
ε0(χe − χ∞)

1 − τ2

e ω2

c

(1 + τ2
e ω2

c )2
E3rmsE2rmsτeκ,

< ta
23

> =
1

4
ε0(χe − χ∞)

1 − τ2

e ω2

c

(1 + τ2
e ω2

c )2
E3rmsE1rmsτeκ.

(7.45)

These expressions differ from those in equation (7.33) only by factor
1 − τ2

e ω2

c

(1 + τ2

e ω2

c )2
;

thus for electroviscosity, the equation analogous to equation (7.36) is derived as

ηel =
1

4
ε0(χe − χ∞)τe

1 − τ2

e ω2

c

(1 + τ2
e ω2

c )2
(E2

1rms
+ E2

2rms
) (7.46)
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7.3. Body with several dynamic variables.

If the non-equilibrium states of dielectrics moving in an electromagnetic field can
be characterized by several dynamic variables, energy dissipation Tσs corresponding
to entropy production density σs is

Tσs = t
v :

1

2
(d̊d

−1 + d
−1

d̊) + ̺̊p(E + v × B − Ee) − ̺T
∑

~ξi
~̊ξi (7.47)

on the basis of equations (4.42) and (7.4). If we restrict our discussion to isothermal,
volume preserving motions of isotropic materials, then there is no coupling between
processes belonging to tensor and vector quantities. Upon introducing quantities

̺̊p = P̊, X0 = P̊, Xi = −
√

ρT ~ξi (7.48)

together with
J0 = E + v × B − Ee,

Ji =
√

ρT ~̊ξi = −X̊i,
(7.49)

linear laws are obtained with the matrix representation already used in subsection
6.2.6. in the following form:

E + v × B − Ee = h00P̊ + h01X ,

−X̊ = h10P̊ + h11X .
(7.50)

Let us investigate first the behavior of the medium at rest when the magnetic field
does not contribute to the events and the objective time derivatives are identical
with the partial ones. On accepting the validity of equation (7.9) for weak fields
and introducing complex frequency s (p is engaged), the equations transform into

E =
1

ε0χe

P + h00sP + h01X ,

0 = h10sP + (h11 + sδ)X
(7.51)

from which, after eliminating X , we arrive at

E =

[

1

ε0χe

+ h00s − h01(h11 + sδ)−1h10s

]

P. (7.52)

If time dependence is given in the form of exp(iωct) and s is substituted by iωc,
the reciprocal value of complex dielectric susceptibility results as

1

ε0χ(ωc)
=

1

ε0χe

− ω2

ch01(h
2

11
+ ω2

cδ)−1h10 + iωc

[

h00 − h01h11(h
2

11
+ ω2

cδ)−1h10

]

.

(7.53)
The dispersion relation theoretically describes the behavior of the medium in the
whole spectral range, if a sufficient number of dynamic variables are used. In
such cases, matrices are obviously very ample. Thus, equation (7.53) is not very
convenient for the practical determination of complex susceptibility χ(ωc). This



152 VII. ELECTRIC POLARIZATION IN FLOWING MEDIA

equation becomes useful, however, for the description of dielectrics flowing in an
electric field.

Let us now consider a dielectric medium with a stationary shear flow in a static
electric field. The velocity field of this medium is described by equations (7.29)
and (7.30). For simplicity, let us suppose that the direction of the electric field lies
in the plane x1x2 and, further, that no magnetic field is involved. Then equation
(7.50) may be written as

E =
1

ε0χe

P + h00~ω × P + h01X ,

0 = h10~ω × P + h11X + ~ω ×X ,

(7.54)

where ~ω = κ
2
e3. The vectors in plane x1x2 are conveniently replaced by complex

numbers since the vectorial multiplication by ω means a rotation by 900 and a
stretch of κ

2
, similar to multiplication by an imaginary number κ

2
i. Taking this into

consideration, the equations become

E =
1

ε0χe

P + h00i
κ

2
P + h01X

0 = i
κ

2
h01P +

(

h11 + i
κ

2
δ
)

X

(7.55)

which is identical with equation (7.51) when substitution κ
2
i = s is used. This

means at the same time that the solutions of the equations are also identical, i.e.

E =
1

ε0χ
(

κ
2

)P, (7.56)

where χ
(

κ
2

)

is the complex susceptibility.
The antisymmetric component of Cauchy’s stress tensor can be determined on

the basis of equation (7.22). By providing χ in the form

χ
(κ

2

)

= χ1

(κ

2

)

− iχ2

(κ

2

)

(7.57)

we may write that

P1+iP2 = ε0(χ1−iχ2)(E1+iE2) = ε0(χ1E1+χ2E2)+iε0(−χ2E1+χ1E2). (7.58)

Since according to our assumption neither P nor E have a third component, the
only non-zero component of ta is:

ta
12

=
1

2
(P1E2 − E1P2) =

ε0

2
χ2

(κ

2

)

(E2

1
+ E2

2
). (7.59)

This result means that to maintain shear flow in an electric field, a shear stress
larger by a factor ta

12
is needed. The electroviscosity coefficient is then obtained in

the form

ηel =
ε0

2
(E2

1
+ E2

2
)
1

κ
χ2

(κ

2

)

. (7.60)

The peculiarity of this equation is that it contains only quantities determinable
by electric measurements, i.e. no tedious and expensive mechanical techniques are
required for determining χ

(

κ
2

)

.
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7.4. Flow and polarization of conductive media.

In a conductive medium, electric current density is also involved. Thus, on the
basis of equation (4.42), energy dissipation density Tσs is described by

Tσs = t
v :

1

2
(d̊d

−1 + d
−1

d̊) + (j + ̺̊p)(E + v × B) − ̺T
∑

i

~ξi
~̊ξi (7.61)

instead of equation (7.41). Another significant difference is that here Ee equals
zero, since equilibrium in a conductive medium can only exist if E + v × B = 0.
This means, at the same time, that electric polarization cannot be an equilibrium
state parameter, but it has to be considered a dynamic variable. The situation
is further complicated by the fact that the time derivative of electric polarization
is included in internal energy production density, i.e. its change results in work if
E + v × B is not equal to zero.

For the sake of simplifying the mathematics involved, electric polarization is not
taken a dynamic variable, it is rather considered a function of state parameters.
On the other hand as the polarization is zero, in equilibrium, the vector p may be
given as

p =
∑

i

√

Tγi
~ξi, (7.62)

where close to equilibrium quantities γi may be regarded as independent of the
dynamic state parameters. Obviously, to choose the dynamic variables canonically,
polarization does not read to be kept constant for the system to approach an equi-
librium as determined by the equilibrium state parameters. Besides, in order to
keep the internal energy constant, condition E+v×B = 0 has also to be satisfied.
Taking all this into account, thermodynamic forces belonging to vectorial processes
can suitably be chosen for the motion of a conductive medium under isothermal,
constant-volume conditions as

X0 = E + v × B, Xi =
√

ρT ~ξi (7.63)

while the conjugate currents may be given on the basis of equation (7.61) in the
form

J0 = j + P̊, Ji = −
√

ρT ~̊ξi = −X̊i (7.64)

In this case, linear laws may be written by using the matrix formalism as

j + P̊ = L00(E + v × B) + L01X ,

−X̊ = L10(E + v × B) + L11X
(7.65)

Using equation (7.62) for the vector of electric polarization

P̊ = γX̊ = −γL10(E + v × B) − γL11X (7.66)

holds and the equations are transformed to

E + v × B = −(γL10)
−1P̊ − (γL10)

−1L11X ,

−X̊ = −L10(γL10)
−1P̊ −

[

(γL10)
−1L10(γL11) − L11

]

X .
(7.67)



154 VII. ELECTRIC POLARIZATION IN FLOWING MEDIA

These equations are completely analogous to equation (7.50); only here Ee = 0, and
the notation of the coefficients is different. This result means that the equations
derived for dielectrics may be used in an unchanged form also for conductive media
if we take into consideration that in the latter case conductive current should also
be included in the expression of entropy production. Therefore, the system of
conduction coefficients in equation (7.66) does not define a necessarily positive
definite form. However, the results prove that polarization phenomena taking place
during the flow of conductive media may be described by the formalism elaborated
for dielectrics.

7.5. Thermodynamic theory of streaming birefringence.

When studying streaming birefringence, we have to start from the solution of
equations (7.50) for high frequencies. In calculating the objective time derivatives,
quick variation of fields and the rotation of the medium should be taken into con-
sideration. If a monochromatic wave is used for illumination, the objective time
derivatives can be calculated as follows:

P̊ = sP − ~ω × P,

X̊ = sX − ~ω ×X
(7.68)

where s is the complex frequency of the illuminating wave and ~ω is the angular
velocity of the medium. In practical cases |~ω| ≪ |s|,

The simplest mathematical solution of our problem is obtained if matrices h00,
h10 and h11 are regarded as hypermatrices, the elements of which are isotropic
second order tensors. Then the objective time derivatives are calculated by multi-
plying by tensor sδ− ~ω×δ . This means that in equation (7.52), sδ− ~ω×δ should
be written instead of s, and thus

P = ε0χ(sδ − ~ω × δ)E (7.69)

results. If we consider that |~ω| ≪ |s| and if we are content with expanding angular
velocity components into a series up to linear order, the correlation

P = ε0χ(s)E − ε0

dχ(s)

ds
~ω × E (7.70)

is obtained which, after substitution s = iωc and using equation (7.57), becomes

P = ε0 [χ1(ωc) − iχ2(ωc)]E + ε0

{

dχ2

dωc

+ i
dχ1

dωc

}

~ω × E (7.71)

This result may be interpreted so that for rotating media the tensor of dielectric
susceptibility contains an antisymmetric component as well, which is proportional
to the angular velocity of rotation.

For optical calculations, the concept of electric displacement is suitably intro-
duced which, based on equation (7.71), may be given in the form

D = ε(ωc)E + i
dε(ωc)

dωc

~ω × E (7.72)
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where ε(ωc) is the complex permittivity depending on angular frequency ωc. The
above formula describes optical activity. The electric and magnetic field strengths
in traveling waves are

E = E0 exp [i(ωct − kx1)] , H = H0 exp [i(ωct − kx1)] . (7.73)

Upon substituting these expressions of E and H into Maxwell’s equations (2.27)
and taking conduction current density and electric charge density equal to zero we
obtain

−ike1 × E + iωcµH = 0, −ike1 × H = iωc

(

εE + i
dε

dωc

~ω × E

)

, (7.74)

where e1 is the unit vector in direction x1. Expressing H from the first equation
and substituting it into the second one we arrive at

−
k2

ωcµ
e1 × (e1 × E) = ωcεE + iωc

dε

dωc

~ω × E. (7.75)

If we divide both sides by ωcε and take the components, we obtain

0 = E1 + i
1

ε

dε

dωc

(ω2E3 − ω3E2),

k2

ω2
cµε

E2 = E2 + i
1

ε

dε

dωc

(ω3E1 − ω1E3),

k2

ω2
cµε

E3 = E3 + i
1

ε

dε

dωc

(ω1E2 − ω2E1).

(7.76)

From the first equation the field strength component in the direction of wave prop-
agation as a function of angular velocity components and transversal field strength
components can be calculated. In the other two equations, E1 occurs only multi-
plied by the angular velocity components. From the second and third equations,
we arrive at

k2

ω2
cµε

E2 = E2 − i
ω1

ε

dε

dωc

E3,
k2

ω2
cµε

E3 = E3 + i
ω1

ε

dε

dωc

E2 (7.77)

which is a homogeneous linear system that has a non-trivial solution only if its
determinant is zero, i.e.

∣

∣

∣

∣

∣

∣

∣

k2

ω2

cµε
− 1 iω1

ε
dε
dωc

−iω1

ε
dε
dωc

k2

ω2

cµε
− 1

∣

∣

∣

∣

∣

∣

∣

= 0. (7.78)

From this condition
k2

ω2
cµε

= 1 ±
ω1

ε

dε

dωc

(7.79)
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results. Taking this into account, the solution of equation (7.77) is:

E3 = +iE2. (7.80)

This result means that circularly polarized waves belong to polarization equation
(7.72). Optical activity for unit length is

[α] =
π

λ

1

ε

dε

dωc

ω, (7.81)

where λ is the wavelength of light.
On substituting particular values into our general equation, it turns out that

the effect is small which means that the term originating from the rotation of the
medium may be neglected in the calculation of objective time derivatives. There-
fore, streaming birefringence cannot be explained by the appearance of objective
time derivatives. We should notice, however, that the elements of matrices h00,
h01, h10 and h11 in equation (7.50) may depend on state parameters, especially on
dynamic state parameters as well. It should also be taken into consideration that
in a weak electric field, the vectorial dynamic state parameters are small; therefore,
the dependence of the conduction coefficients on them cannot be significant unless
the light intensity is very high. However, important effects may result if the matrix
elements in question depend on some dynamic variable of second-order tensor. As
these matrix elements can be regarded as second-order tensors — they turn into
numbers only due to the isotropy of the medium — the dependence may be linear,
i.e. if the elements of matrices h00, h10, h01 and h11 are considered linear functions
of dynamic variables of second-order tensor if these dynamic variables are not large.
Consequently if we proceed with this linear approximation, we arrive at equation
(6.171) of subsection 6.2.5.

Finally, by studying time inversion we may arrive at the conclusion that β-type
dynamic variables cannot appear in equation (6.171), even if they are necessary for
the description of the medium. This derivation is so simple that it is left to those
who are particularly interested in it.



CHAPTER VIII

APPLICATIONS OF THE THEORY

This chapter presents some applications of the theory to problems with dynamic
degrees of freedom having clear physical. On the basis of hypotheses concerning
the structure of materials, constitutive equations will be derived independently of
the thermodynamic theory: partly proving thereby the applicability of the thermo-
dynamic approach and partly showing the limits of individual methods. As a first
example, the motion of globular colloids will be discussed.

8.1. Viscosity of globular colloids.

The behavior of a medium consisting of a solid dispersed in a newtonian liquid
will be examined first. The dispersed phase is assumed to be a Hooke body from
the viewpoint of its rheological properties. It consists of homodimensional spher-
ical particles uniformly dispersed in the continuous phase, but randomly. If the
volume fraction of the dispersed phase is small enough, it may be assumed that the
shape of the particles is deformed homogeneously during the motion and, mean-
time, the elastic medium stores mechanical energy. For simplicity let us disregard
the compressibility of both phases and the temperature dependence of the viscosity
of the liquid phase and that of the shear modulus of the elastic phase. From the
macroscopic point of view, the colloidal solution is obviously a fluid, incompress-
ible according to the earlier hypothesis; thus its equilibrium is determined by its
specific internal energy. This is in complete accordance with the assumption that
the colloidal particles in the medium at rest are spheres. The situation is totally
different during motion. In this case the colloidal particles are deformed due to
stress, and they store part of their energy in the form of mechanical energy. For
calculating the entropy, the equilibrium entropy function based on the simplifying
assumption may be used, but only stored mechanical energy should be subtracted
from internal energy:

s = so

(

u − c
µ1

̺
ε : ε

)

, (8.1)

where c is the volume fraction of dispersed phase,
µ1 the shear modulus of the dispersed material,
̺ the average density, and
ε the deformation of the colloidal particles.

If the stored mechanical energy is small, upon expanding equation (8.1) into a series
up to the linear term, we obtain:

s = s0(u) −
1

T
c
µ1

̺
ε : ε. (8.2)
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If a new variable

ξ =

√

2cµ1

T̺
ε (8.3)

is introduced we arrived at

s = s0(u) −
1

2
ξ : ξ (8.4)

which is identical to equation (6.1). Thus, it is seen that in the present case the
dynamic variable describes the deformation of elastic colloidal particles. From the
example it is obvious why dynamic variables are unnecessary for characterizing
equilibrium states.

When knowing the entropy function in the form of equation (8.4), the thermo-
dynamic theory described in section 6.1 may be directly applied. Since the tensor
ε providing the deformation of colloidal particles is even with respect to time in-
version, transformation (6.9) results in

√

̺Tξ =
√

2cµ1ε = α.

Thus, we arrive at constitutive equation (6.10).
It should be noted that an increase in the concentration may lead to a more

complex deformation of particles. From thermodynamic aspects we may say in
this case that hydrodynamic interaction between the particles necessitates the in-
troduction of additional dynamic degrees of freedom. Later calculations prove this
assumption.

8.2. Calculation of the viscosity of globular

colloids based on structural considerations.

Let us now proceed to determine the viscosity of globular colloids by the mechan-
ical method. Calculations will be performed in a more general manner than have
been done with the simplifications applied so far. In what follows, the compress-
ibility of both phases will be taken into account, and the hydrodynamic interaction
between the particles will not be neglected. In the calculations, Oldroy’s method,
[123] whose essential features are given below, will be used:

a. It is assumed that the particles are so small that the inertia of the medium
can be neglected.

b. We introduce a complex way of writing which may be considered an operator
notation. Both phases are regarded as elastic, with complex modules.

c. The hydrodynamic interaction between individual particles is taken into ac-
count so that we select one particle (with radius a) and surround it with a sphere
consisting of the continuous phase whose radius b is chosen so that the volume ratio
of the two concentric spheres should correspond to the composition of the colloid,
c. In short, it is assumed that

a3

b3
= c (8.5)

holds. The space around the outer sphere is surrounded by a medium having macro-
scopic properties identical with those of the colloidal solution. The parameters of
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#
µ∗, λ∗

µ0, λ0

µ1, λ1

Figure 8.1

the average medium are chosen so that the structure consisting of the concentric
spheres should be fitted best into the background.

The known differential equation describing the equilibrium of the elastic medium
in our model is the following:

µ∆l + (µ + λ) grad div l = 0, (8.6)

where

µ =











µ1 if r < a

µ0 if a < r < b

µ∗ if b < r

and λ =











λ1 if r < a

λ0 if a < r < b

λ∗ if b < r

(8.7)

in which µ1 and λ1 are the Lame constants of the dispersed phase; µ0 and λ0 those
of the continuous phase; and µ∗ and λ∗ those of the average medium. The related
boundary condition is:

lim
r→∞

(l − εr) = 0; (8.8)

where ε is the deformation of the medium. In addition, function l(r) should be
continuous in the whole range and the stress vector must also be continuous on all
surfaces.

Since equation (8.6) and condition (8.8) are linear in l, it is easy to see that
solution l(r) will be homogeneous and linear in ε. Hence the solution sought is :

l = T (r) : ε, (8.9)

where T (r) is a third order tensor depending on the place. Relation (8.9) may be
given also in terms of orthogonal components:

li = Tijk(r)εjk. (8.10)

From this it is seen that tensor T (r) is symmetric in its second and third indices.
Based on considerations of symmetry it is also easy to see that the field of tensor
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T (r) is of globular symmetry. To determine it, let us choose an arbitrary point
with position vector r and define an auxiliary cartesian coordinate system in which
this point lies on the third axis. On reflection to planes perpendicular to axes x1

and x2, it can be seen that each component of tensor T (r) is zero in which an
odd number of 1’s or 2’s occurs. By means of the mirror symmetry exchanging
axes x1 and x2, it is evident that an exchange of indices 1 and 2 does not alter
the components of T (r). According to this, in tensor T (r) only three independent
components remain:

T113 = T131 = T223 = T232 = α, T311 = T322 = β, T333 = γ, (8.11)

where notations α , β and γ are introduced with which we can rewrite equation
(8.9) as

l1 = 2αε13; l2 = 2αε23; l3 = β(ε11 + ε22) + γε33. (8.12)

On utilizing the fact that vector r shows the direction of the third axis, equation
(8.12) takes the following form:

l = f(r)ε0r + g(r)(rε0r)r + h(r) tr εr, (8.13)

where

f(r) =
2α

r
; g(r) =

γ − β − 2α

r3
; h(r) =

γ + 2β

3r
; ε0 = ε −

1

3
tr εδ.

(8.14)
Equation (8.13) is completely general. On the other hand, functions f , g and h
are functions only of the distance from the center; in this way we eliminated the
disadvantage of choosing a special coordinate system.

Let us now determine functions f, g and h. For this purpose, let us substitute
equation (8.13) into differential equation (8.6). For this, we need the following
expression:

∆(fε0r) =

(

f ′′ +
4

r
f ′

)

ε0r,

∆[g(rε0r)r] = 4gε0r +

(

g′′ +
8

r
g′

)

(rε0r)r

∆[hr] =

(

h′′ +
4

r
h′

)

r

grad div(fε0r) = 2
f ′

r
ε0r +

1

r2

(

f ′′
−

1

r
f ′

)

(rε0r)r

grad div[g(rε0r)r] = (2g′r + 10g)ε0r +

(

g′′ +
6

r
g′

)

(rε0r)r

grad div(hr) =

(

h′′ +
4

r
h′

)

r.

(8.15)
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Upon using these and utilizing the fact that in the equation obtained the coefficients
of ε0r, (rε0r)r and (tr ε)r should individually be zero, we obtain

µ

(

f ′′ +
4

r
f ′ + 4g

)

+ (µ + λ)

(

2

r
f ′ + 2g′r + 10g

)

= 0,

µ

(

g′′ +
8

r
g′

)

+ (µ + λ)

(

1

r2
f ′′

−
1

r3
f ′ + g′′ +

6

r
g′

)

= 0,

µ

(

h′′ +
4

r
h′

)

+ (µ + λ)

(

h′′ +
4

r
h′

)

= 0.

(8.16)

Our task now is to solve the set of ordinary differential equations. Since the first
two equations do not involve h whereas the third contains only h, they may be
solved separately. We look for solutions in the form

f = f0r
n+2, g = g0r

n (8.17)

Using them, we obtain the following homogeneous, linear equation system:

(n + 2)[µ(n + 5) + 2(µ + λ)]f0 + 2[2µ + (µ + λ)(n + 5)]g0 = 0,

(n + 2)n(µ + λ)f0 + n[2µ + (2µ + λ)(n + 5)]g0 = 0
(8.18)

It has a non-trivial solution if and only if

∣

∣

∣

∣

(n + 2)[2(µ + λ) + µ(n + 5)] 2[2µ + (µ + λ)(n + 5)]

(n + 2)n(µ + λ) n[2µ + (2µ + λ)(n + 5)]

∣

∣

∣

∣

= 0. (8.19)

From this, the possible values of n are 0, −2, −5, −7. The four independent
particular solutions are obtained from the first equation of system (8.18):

f1 = (7µ + 5λ)r2; g1 = −(7µ + 2λ);

f2 = 1; g2 = 0;

f3 = 2µr−3; g3 = 3(µ + λ)r−5;

f4 = 2r−5; g4 = −5r−7

(8.20)

Function h is obtained from the third equation of (8.16). The two particular solu-
tions are:

h1 = 1 and h2 = r−3. (8.21)

The coefficients are provided by continuity conditions. However, care should be
taken that µ and λ do not remain constant in the whole space; therefore, the
coefficients in the solution will differ for regions r < s, a < r < b and b < r.

In the first region

f = −A1f1 − B1; g = −A1g1; h = −E1. (8.22)

Here the coefficients of f3, f4, g3, g4 and h2 are zero, since the functions sought are
continuous also at r = 0. The negative signs will prove to be convenient later.
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In the second region (a < r < b)

f = A2f1 + B2 + C2f3 + D2f4; g = A2g1 + C2g3 + D2g4;

h = E2 + F2h2.
(8.23)

In the third region (b < r)

f = −B∗
− D∗f4; g = −D∗g4; h = −E∗; (8.24)

where the coefficients of f1 and g1 are zero due to the behavior in infinity. For the
same reason

B∗ = −1, E∗ = −1/3

and the coefficients of f3, g3 and h2 are chosen to be zero, for the sake of a possibly
faster disappearance of the perturbation caused by the two spheres. It turns out
in what follows that D∗ cannot be chosen freely any more, though this would have
been the condition of the perfect disappearance of the perturbation outside the
outer sphere.

Next the stress tensor and then the stress vector on radial surfaces are deter-
mined. They are needed when fitting the solutions on the spheres. According to
Hooke’s law:

t = µ(l ◦ ∇ + ∇ ◦ l) + λ div lδ; (8.25)

from which

t r = µ(r∇)l + µ(∇ ◦ l)r + λ(div l)r. (8.26)

From equation (8.13) we get

tr = µ(rf ′ + 2f + 2gr2)ε0r +

[

µ

(

2g′r + 4g +
1

r
f ′

)

+

+ λ

(

1

r
f ′ + g′r + 5g

)]

(rε0r)r + [2µ(h′r + h) + λ(h′r + 3h)] tr εr (8.27)

For brevity, the temporary notations defined by

t r = α(r)ε0r + β(r)(rε0r)r + γ(r) tr εr (8.28)

and introduced. The particular forms of α, β and γ corresponding to equation
(8.20) and (8.21) are

α1 = µ(14µ + 16λ)r2; α2 = 2µ;

α3 = 2µ(2µ + 3λ)r−3; α4 = −16µr−5;

β1 = −µ(14µ + 19λ); β2 = 0;

β3 = −24µ(µ + λ)r−5; β4 = 40µr−7;

γ1 = (2µ + 3λ); γ2 = −4µr3.

(8.29)
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Continuity conditions say that f , g, h, α, β and γ are continuous at r = a and
r = b. First, the continuity of h and γ are written in a form reduced to zero

E1 + E2 + F2a
−3 = 0,

E1(2µ1 + 3λ1) + E2(2µ0 + 3λ0) − 4µ0F2a
−3 = 0,

E2 + F2b
−3 + E∗ = 0,

E2(2µ0 + 3λ0) − 4µ0F2b
−3 + E∗(2µ∗ + 3λ∗) = 0.

(8.30)

The equations obtained may be regarded as a system of homogeneous, linear equa-
tions which has a non-trivial solution if and only if its determinant is zero:

∣

∣

∣

∣

∣

∣

∣

1 1 a−3 0
3κ1 3κ0 −4µ0a

−3 0
0 1 b−3 1
0 3κ0 −4µ0b

−3 3κ∗

∣

∣

∣

∣

∣

∣

∣

= 0. (8.31)

Let us introduce the compression modulus

κ =
2µ

3
+ λ (8.32)

For simplifying calculations, let us use notations

ξ =
κ∗

κ0

− 1; η =
κ1

κ0

− 1; ζ =
3κ0

4µ0 + 3κ0

. (8.33)

With them, determinant (8.31) takes a simpler form

∣

∣

∣

∣

∣

∣

∣

1 1 ζ 0
η 0 −1 0
0 1 ζc 1
0 0 −c ξ

∣

∣

∣

∣

∣

∣

∣

= 0. (8.34)

If we expand it with respect to column 4 and solve the equation for ξ, we obtain:

ξ =
cη

1 + ζη(1 − c)
. (8.35)

We proceed in the same way for f , g, α and β. With those, the determinant of the
set of homogeneous linear equations is of the eighth order.

See on next page. (8.36)

The expansion of this eighth-order determinant is a tedious task. In order to sim-
plify it, let us use the following quantities:

µ1

µ0

− 1 = y;
µ∗

µ0

− 1 = x;
µ1

λ1

= z1;

µ0

λ0

= z0;
a

b
= t;

(8.37)
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whose application and the equivalent transformation of equation (8.36) lead to the
equation:

See on next page. (8.38)

From the first two columns of the determinant obtained, it is apparent that the
equation is quadratic with respect to the new variable x. We can select the proper
root by the condition that x is necessarily zero at zero concentration and modulus
µ∗ is a continuous function of the concentration. The expansion of the determinant
and the solution of the equation is tedious and too complex to be surveyed even by
using the notations introduced; therefore, we restrict our study to incompressible
media. In this case both z1 and z0 are zero. The situation is further simplified
if we consider only low concentrations. Then, by keeping the smallest powers of t
in the coefficients of the quadratic equation (even calculating the coefficient of the
quadratic term at t = 0, since at low concentrations the root we seek is small), x2

contributes to the value of the quadratic polynomial only to a small extent. The
above simplifications lead to

16x2(19y+35)(1+0.4y)+x(19y+35)[35+(14−30t3)y]−35t3y(19y+35) = 0 (8.39)

which become after reduction

16(1 + 0.4y)x2 + [35 + (14 − 30c)y]x − 35yc = 0 (8.40)

where we returned to notation t3 = c. Since the quadratic equation obtained is only
an approximation, it is not worth taking the inconvenience of accurate solution. In
first approximation we are satisfied with equation

x =
yc

1 + 0.4y
(8.41)

which is valid for very low concentrations only. It is of importance that equation
(8.41) transforms into the well-known Einstein equation for rigid dispersed phase,
i.e. if y → ∞. In this case, namely,

x = 2.5c (8.42)

which, by resolving the abbreviations, takes

µ∗ = µ0(1 + 2.5c). (8.43)

As µ = pη for viscosity, we arrive at

η∗ = η0(1 + 2.5c) (8.44)

which is the well-known Einstein equation.
Approximation (8.41) may be regarded as the linear expansion of the shear

modulus of the colloid. The disadvantage of this form is that it provides good results
only for very low concentrations. The quality of approximation may be improved if
one of the factors of x2 in equation (8.40) is substituted from equation (8.41) and
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the improved value of x is calculated from the linear equation thus obtained. This
procedure is essentially an iterative solution based on the correlation between roots
and coefficients. The approximation thus obtained is

x =
yc

1 + 0.4y(1 − c)
; (8.45)

which shows a perfect formal analogy to equation (8.35) valid for the compression
modulus. This formal analogy, which includes also the fact that equation (8.45)
gives the proper result for limiting case c = 1, suggests that equation (8.45) pro-
vides perhaps a better approximation for incompressible media, than the accurate
solution of equation (8.38). It should be mentioned here that at the beginning of
this consideration we assumed the uniformity of the colloidal particles, whereas in
the results only parameter t is characteristic for concentration is involved; thus, it
may be assumed that the results hold also for the simultaneous presence of particles
with different sizes.

A further interesting feature of equation (8.45) is that it may be interpreted also
by the mechanical models of rheology. In order to illustrate this, let us return from
variables x and y to µ1, µ0 and µ∗:

µ∗ = µ0
(2 + 3c)µ1 + 3(1 − c)µ0

2(1 − c)µ1 + (3 + 2c)µ0
, (8.46)

$" !!!
3∗(1−c)
3+2φ µ0

25c
2(1−c)(3+2c)µ0

25c
(3+2c)µ1

a)

%"! !!2+3c
2(1−c)µ0

3(1−c)(2+3c)
25c µ0

2+3c
25c µ1

b)

Figure 8.2

This correlation is the modulus of mechanical models shown in Figure 8.2. The
mechanical models prove by their existence that for colloids consisting of viscoelastic
components, the complex viscosity of the medium is always a positive real function
when those of the component are positive real functions. For the medium discussed
in section 8.1. when µ0 = pη0, for example, by introducing symbols

η =
2 + 3c

2(1 − c)
η0; τd =

3(1 − c)

2 + 3c

η0

µ1
; τt =

3 + 2c

2(1 − c)

η0

µ1
(8.47)

correlation

µ∗ = ηp
τdp+1

τtp+1
(8.48)
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is obtained which is identical with the complex modulus in equation (6.17) intro-
duced for the medium characterized by one dynamic variable.

All this shows that the equation derived from the structure of colloids by means of
classical mechanics is completely identical with the results of linear non-equilibrium
thermodynamics. The thermodynamic conductivity coefficients can be determined
by comparing equations (8.47) and (6.13).

Let us now examine the possibilities of calculations for the case when the con-
centration of the globular colloid consisting of incompressible components exceeds
the limit of the applicability of equations (8.41) and (8.45). One of the possibilities
is to solve the original equation (8.38). Due to incompressibility, z0 = z1 = 0.
By expanding the determinant at the left side of the equation we obtain quadratic
expressions for both x and y, the coefficients of which are the polynomials of pa-
rameter t = c1/3:

(P22y
2 + P21y + P20)x

2 + (P12y
2 + P11y + P10)x + P02y

2 + P01y = 0, (8.49)

where
P22= 121.6t10 − 760t7 + 1276.8t5 − 760t3 + 121.6,

P21= −1480t7 + 2352t5 − 1400t3 + 528,

P20 = 560, P12 = 304t10 − 570t3 + 266,

P11 = −1050t3 + 1155, P10 = 1225,

P02 = −665t3, P01 = −1225t3.

(8.50)

Quadratic equation (8.49) is suitable for numerical calculations also in the case of
complex modules. We shall now illustrate how the procedure may be applied for
the medium discussed in section 8.1. Corresponding to complex representation,
then

µ0 = iκη0; µ∗ = σ1 + iκη∗; (8.51)

where η0 is the viscosity of the continuous phase
κ the shear rate (in the case of small amplitude oscillations, it is substituted

by angular frequency),
σ1 the normal stress function,
η∗ the non-newtonian viscosity belonging to stationary shear flow, or more

accurately speaking, the ratio of shear stress to shear rate.

The meaning of x and y introduced in equation (8.37) is now

x =
η∗

η0
− i

σ1

κη0
− 1; y = −1 − i

µ1

κη0
(8.52)

It is obvious that in equation (8.49) only two variable parameters are included: t
depending on the concentration and κη0

µ1

in y. From the two roots of the quadratic

equation the one for which η∗ is positive should be chosen; i.e., for which inequality

η∗

η0
− 1 = Rex > −1 (8.53)
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is fulfilled. The computer calculation is easy to perform. Figure 8.3 shows the shear
stress function calculated where on the abscissa and ordinate axes, respectively,
reduced variables

κ∗ =
κη0

µ1
; τ∗ =

τ

µ1
(8.54)

are shown.
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Figure 8.3

The following representation, however, provides the relations in a more refined
manner. The logarithm of reduced shear rate is now on the abscissa, whereas the
ordinate shows a variable defined as

[η∗] =
η∗(κ∗) − η∗(∞)

η∗(0) − η∗(∞)
(8.55)

where
η∗(∞) = lim

κ∗→∞
η∗. (8.56)

A picture characteristic for the normal stress is obtained if variable

[σ1] =
σ1

lim
κ→∞

σ1
(8.57)

is plotted against the logarithm of κ∗ .
In general, on the basis of non-equilibrium thermodynamics for bodies with more

dynamic variables, functions (6.152) represented in the above-mentioned way give
step-like functions if the relaxation times belonging to individual dynamic variables
have different orders of magnitude. If relaxation times are close to each other,
these steps merge. The curve for variable [η∗] shows a decrease, whereas that for
[σ1] an increase. The height of steps belonging to individual dynamic variables is
connected by correlation

∆[η∗]iκ
2
i

∆[σ1]i
= const (8.58)
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as calculated from Eq.(6.152), where ∆[η∗]i and ∆[σ1]i are the heights of the i-th
steps, κ corresponds to the middle of the steps.

Figures 8.4. and 8.5. show curves calculated on the basis of equations (8.49)-
(8.57). The curves prove the conclusions obtained by non-equilibrium thermody-
namics. However, this agreement is only of an approximate nature due to the fact
that square root function obtained from the solution of equation (8.49) is not a ra-
tional fractional function of variable κ, which was true in the case of approximation
(8.45).

Our problem may also be solved in another way instead of solving quadratic
equation (8.49). Following the derivation of Boucher [11], we start by assuming the
validity of equation (8.41) for low concentrations even when further particles are
added to the colloid in low concentrations. In the case, µ0 means the shear modulus
of the starting colloid. Upon repeating this procedure frequently enough, we can
arrive at any concentration we want. For elastic materials, according to Boucher,
the agreement with experiments is excellent up to high concentrations.
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The course of calculation is the following: Let us take a colloid with volume V1

for the dispersed phase and volume V0 for the continuous phase. To this colloid,
let us add a volume of dV1 (small amount) of the colloidal particles. The shear
modulus of the colloid is now µ (it stands now for µ0) and µ∗ after having added
the dV1 volume of particles. Let us now apply equation (8.41) for changing the
modulus so that the original colloid should be considered now to be the continuous
phase:

µ∗

µ
− 1 =

µ1

µ − 1

1 + 0.4
(

µ1

µ − 1
) · dV1

V0 + V1 + dV
, (8.59)

Rearranging the equation and utilizing correlations

c =
V1

V0 + V1
and µ∗ − µ = dµ, (8.60)

we arrive at differential equation

dµ

µ
=

µ1 − µ

µ + 0.4(µ1 − µ)

dc

1 − c

the solution of which may be performed by the separation of variables; then we
obtain

− ln(µ1 − µ) + 0.4 lnµ = −ln(1 − c) + lnK. (8.61)

The integration constant is determined from the condition µ = µ0 if c = 0. Thus

− ln(µ1 − µ0) + 0.4 lnµ0 = lnK,

from which the final equation is

µ1 − µ

µ0.4
= (1 − c)

µ1 − µ0

µ0.4
0

(8.62)

This result is nearly identical with equation (8.45) for all cases in which µ differs
only slightly from µ0. This becomes obvious if after rearranging equation (8.62),
the function with a fractional power is expanded into a series around 1. To do this,
let us substitute variables x and y from equation (8.37):

y − x

y
= (1 − c)(1 + x)0.4 ≈ (1 − c)(1 + 0.4x). (8.63)

On solving this equation for x, we arrive at equation (8.45). This means that for
low concentrations nearly the same result is obtained as from the solution of the
complicated quadratic equation (8.36).

Variables in equation (8.62) are usually complex quantities; therefore, calcula-
tions with this equation are quite laborious in spite of its simple form, however, it
can be conveniently used for computation. Figures 8.6 and 8.7 show results calcu-
lated by equation (8.62) for media discussed in section 8.1. On the abscissa is again
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the logarithm of κ∗ defined by equation (8.54), whereas on the ordinate [η∗] defined
by equation (8.55) and [σ1] defined by equation (8.57) are represented, respectively.

A third method for calculating the parameters of colloids with not very low
concentration will also be shown. This method is essentially very similar to that of
Boucher, with the only differences being that colloidal particles are not added in
infinitely small steps and that parameters are calculated after individual steps by
the repeated application of equation (8.45). Calculations carried out in 4 steps are
shown for the medium discussed in section 8.1 in Figures 8.8 and 8.9. The repeated
application of equation (8.45) ensures that the complex modulus will be a positive
real function of frequency and shear stress.

The repeated application of equation (8.46) ensures that the rheological model
of the result can always be obtained. This means that this method provides results
completely compatible with the thermodynamic equations.

For a comparison of the three different methods, η∗(0), η∗(∞) and lim
κ→∞

σ1 values

calculated by these methods as functions of concentration are shown in Figure 8.10.
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On the ordinate, a logarithmic scale is applied. It is apparent from the figure that
the three methods give identical results within 10% for volume fractions not greater
than 0.3 for the medium studied. A careful analysis of the curves makes it obvious
that agreement is excellent even in regions of higher concentrations but not for
shear rates that are too small.

Let us now proceed to compressible media. In this case, quadratic equation
(8.38) should be solved for non-zero values of z and z0. This is a tedious task which
will not be done here. The situation is considerably simpler if we restrict our study
to low concentrations, in which case we arrive at

x =
yc

1 + 0.4y 8z0+3
6z0+3

(8.64)

analogous to equation (8.41). This equation, together with equation (8.35), is a suit-
able starting point for Boucher’s train of thoughts shown earlier for incompressible
components. Concerning details, the reader is referred to the original paper of
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Boucher [11]; here we only mention that with the addition of colloidal particles, z0

also changes; therefore, the procedure results in equations more complicated than
those of equation (8.62).

The solution of the problem is simpler if z is considered a constant; then the
result is similar to equation (8.62). The fractional power in the denominator will
be 0.4 8z0+3

6z0+3 instead of 0.4 and upon expansion into a series, leads to

x =
yc

1 + 0.4y 8z0+3
6z0+3 (1 − c)

(8.65)

which is analogous to equation (8.45). This latter equation, together with equation
(8.35), may serve as a basis for the approximation calculated in finite steps.

8.3. Effect of interfacial tension: emulsions and foams.

Correlations discussed in the previous section may be applied also when both
the continuous and dispersed phases are liquid, or when one of them is gaseous and
the other one is liquid. Thus, e.g., for newtonian liquids complex variables

µ1 = iκη1; µ0 = iκη0; µ = iκη (8.66)

can be used. All procedures mentioned result in a real value for η, i.e. the emulsion
behaves also as a newtonian liquid. However, this conclusion is premature because
the effect of interfacial tension has been neglected so far.

Let us now consider the real situation. At rest, the particles in an emulsion
or foam are spherical. During motion, they become deformed; and if the volume
remains unchanged, their surface increases. Thus, they store excess mechanical
energy due to surface tension. For simplicity, we restrict ourselves to uniform
particles, and then entropy may be written by analogy to equation (8.1) as
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s = s0

(

u − c

ρ
γ

∆A

V

)

(8.67)

where γ is the surface tension,
∆A the increment in the surface of the particle, and
V the volume of the particle.

Let us now determine how the change in the surface depends on the deformation.
Due to spherical symmetry, the change in the surface is an isotropic function of the
deformation tensor. It is expedient to introduce the deformation tensor in the form

ε = d − δ (8.68)

with which we may write

∆A = A0f(tr ε, tr ε2, tr ε3). (8.69)

The calculation of function f leads to elliptical integrals in the general case. How-
ever, for small deformations we stop at the quadratic term of the function expanded
into a power series with respect to the components of ε,

f ≈ k tr ε + k1(tr ε)2 + k2 tr ε2. (8.70)

Constants k, k1 and k2 may be determined also for one-axis deformations (rotational
ellipsoid). For this, let us take a rotational ellipsoid whose rotation axis coincides
with the x axis of the cartesian coordinate system, and the equation of its contour
is

x2

a2
+

y2

b2
= 1 (8.71)

The surface of the ellipsoid is obtained in this case by calculating the integral

A = 2π

a
∫

−a

y
√

1 + y′2 dx. (8.72)

which results in

A = 2π

a
∫

−a

√

b2

(

1 − x2

a2

)

+
b4

a4
x2 dx = 4πb

a
∫

−a

√

1 +
x2

a2

(

b2

a2
− 1

)

dx =

= 4πab

1
∫

0

√

1 + x2

(

b2

a2
− 1

)

dx. (8.73)

Though this integral may be given by elementary functions, it is more convenient
for our purpose to take into account that the difference between a and b is small;
thus, the square root in the integrand may be expanded into a binomial series:

A ≈ 4πab

1
∫

0

1 +
x2

2

(

b2

a2
− 1

)

− x4

8

(

b2

a2
− 1

)2
dx =

= 4πab

{

1 +
1

6

(

b2

a2
− 1

)

− 1

40

(

b2

a2
− 1

)2}

.

(8.74)



8.3. EFFECT OF INTERFACIAL TENSION: EMULSIONS AND FOAMS. 175

Introducing expressions

a = r(1 + ε1) and b = r(1 + ε2) (8.75)

and expanding the right side of equation (8.74) again into a series with respect to
the exponents of ε1 and ε2 and terminating it at the quadratic term, we obtain

A = 4πr2

[

1 +
2

3
(ε1 + 2ε2) +

1

15
(ε2

1 + 6ε2
2 + 8ε1ε2)

]

. (8.76)

Utilizing that in our case

tr ε = ε1 + 2ε2 and tr ε2 = ε2
1 + 2ε2

2, (8.77)

we arrive at the following result:

∆A = 4πr2

[

2

3
tr ε +

2

15
(tr ε)2 − 1

15
tr ε2

]

(8.78)

In what follows, we want to study deformations with unchanged volume. When
doing this, we cannot restrict ourselves to the linear approximation of dilatation.
For volume, in general, correlation

V = V0(1 + ε1)(1 + ε2)(1 + ε3) (8.79)

holds the quadratic approximation of which is

∆V = V0

{

tr ε +
1

2

[

(tr ε)2 − tr ε2
]

}

. (8.80)

This means that in cases with unchanged volume (equation (8.78)) tr ε = 1
2 tr ε2

should be used instead of linear approximation trε = 0. Consequently, on omitting
the higher order terms from equation (8.78), expression

∆A = 4πr2 4

15
tr ε2 = 4πr2 4

15
ε : ε (8.81)

is obtained, whose substitution into equation (8.67) results for the entropy in

s = s0

(

u − c

ρ

4γ

5r
ε : ε

)

. (8.82)

Introducing an effective shear modulus

µ1 =
4γ

5r
, (8.83)

our equation becomes identical with equation (8.1). Thus we may say that our
method used in sections 8.1. and 8.2. is applicable also to emulsions; however, the
effective shear modulus interpreted by equation (8.83) should be substituted.
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It should be mentioned that the effective modulus of shear given by equation
(8.83) depends on the size of drops; thus, the equations obtained in previous sections
may be applied directly only for homodisperse emulsions. In the presence of drops
with different sizes, we should proceed as if several types of colloidal particles were
present simultaneously. This also means that more dynamic variables are needed
for taking into account the deformation of different particles.

Let us now examine the equations in section 8.2. from the viewpoint of their
generality. Equation (8.41) refers to dilute solutions and may be regarded as the
linear partial sum of expansions with respect to concentration. Generalization is
not difficult: on the basis of definition of y by equation (8.37), quantities

yi =
µi

µ0
− 1 (8.84)

may be introduced use whose makes the generalization of equation (8.41) possible
in the form

x =

N
∑

i=1

ciyi

1 + 0.4yi
, (8.85)

where the different colloidal particles are numbered from 1 to N .

The generalization of equation (8.45) contains, however, more arbitrary features.
Let us first rearrange equation (8.45) into the form

x

1 + 0.4x
=

cy

1 + 0.4y
(8.86)

On the basis of this, generalization in the form

x

1 + 0.4x
=

N
∑

i=1

ciyi

1 + 0.4yi
(8.87)

is obvious.

Unfortunately, generalization of the other equations in section 8.2 is much more
difficult as the effect of different particles appears in the macroscopic medium in
an averaged form; thus the pathway leading to equation (8.36) is not passable and
no analogous equation to equation (8.36) may be written for more components
present. The generalization of the derivation by Boucher is also doubtful. For more
components (namely, on the basis of equation (8.59)), we arrive at correlations

∂µ

∂ci
=

µ

1 − ci

µi − µ

µ + 0.4(µi − µ)
(8.88)

which cannot hold simultaneously for all the components, since the mixed second
order derivatives are identical only if µi = µk. This may be proved by a simple
calculation. This fact calls attention to the shortcomings in the considerations of
Boucher.
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8.4. Thermal motion of rigid colloidal particles.

In the previous chapters we dealt with the behavior of globular colloids. Now we
will examine how colloids behave when the particles are less symmetric. For sim-
plicity, we assume that they are rigid: the effect of deformation had been thoroughly
studied in the previous chapters and, presumably, the deformation of particles with
an arbitrarily chosen shape did not result in qualitatively different behavior. The
effect of the deformation of the particles is overruled by the orientational effects.
The latter will be treated in this section within the framework of the linear theory.

Particles of arbitrary shape will not be discussed in what follows, as this would
be too complicated; but we assume that the colloidal particles have a preferred
direction around which their rotation is indifferent with respect to their properties,
and even a rotation of this preferential direction by 1800 is without consequences.
This means that the particles may be regarded as of cylindrical symmetry. However,
a lower order of symmetry would also be sufficient to reach the same results, that
is, the assumption of a three-fold or higher-order rotational axis; but this would
only complicate the calculation.

The orientation of particles can be given by a vector whose size may be arbitrary,
but it is more expedient not to consider the size of the vector at all, i.e. vectors n
and −n will be regarded as identical. This assumption implies also our condition
that n and −n mean identical orientations.

Let us suppose that the orientation of particles is random, and in the equilib-
rium state of an isotropic colloid, the orientation has a distribution with spherical
symmetry. During flow, obviously the continuous phase carries the particles along
thereby distorting the spherical symmetry. It is also obvious that the spherical
symmetry of distribution is restored by the Brownian motion of the particles after
the flow stopped. This cannot take place during flow, even though the effect of
Brownian motion also prevails then.

The orientation distribution of the particles will be illustrated by a closed surface
whose volume is constant and whose equilibrium shape is spherical. If flow distorts
the sphere, the deformed shape may be considered, up to a first approximation, an
ellipsoid. This means that the deformation of the sphere can be characterized by a
symmetric second-order tensor of zero trace ε, i.e. for characterizing the local state
of the colloid, besides internal energy, a symmetric second-order tensor of zero trace
is necessary as a dynamic variable. For small ε-s, the entropy can be expanded into
a series with respect to the components of ε up to the quadratic term:

s = s0(u) − s′′

2
ε : ε, (8.89)

where s′′ is a positive constant. This provides a starting point for thermodynamic
treatment. If we introduce the new dynamic variable

ξ =
√

s′′ε (8.90)

the form of the entropy function will be identical with equation (8.4). As the shape
of the sphere representing distribution does not change on time inversion, we may
introduce variable

√

ρTξ = α
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by means of which the problem can be treated in the same way as we have done
for globular colloids in section 8.1.

In order to confirm the results of the thermodynamic theory, constitutive equa-
tion will also be derived on the basis of structural considerations. For this, let us
first calculate the entropy for an arbitrary particle distribution. Configurational
entropy sc for one particle can be calculated from the distribution by the formula
known from statistical physics

sc = −k

∫

f ln f dΩ (8.91)

where k is Boltzmann’s constant,
f the density function of the probability distribution, and
dΩ the measure of the infinitesimal part of the space of events.

However, it is expedient to double the space of events and to perform integration
for the total surface of the sphere. On taking the radius of the sphere to be unity,

sc = −k

2

∮

S

f ln f dA (8.92)

Due to the doubling of the space of events, the condition of normalization is

∮

S

f dA = 2

If distribution differs only slightly from that of spherical symmetry, notation

f =
1

2π
(1 + ϕ) (8.93)

can be introduced; by using this, we obtain for small ϕ

∮

S

ϕdA = 0, sc = k ln 2π − k

4πr2

∮

S

ϕ2 dA. (8.94)

Specific entropy is now obtained in the form

s = s0(u) − kN

4πr2

∮

S

ϕ2 dA (8.95)

where N is the number of particles in the unit mass of the colloid. If only Brownian
motion is involved, the time course of the change in distribution function f can be
described by the equation of diffusion on the surface of the sphere. In order to be
able to use the equation of spatial diffusion, we employ relationship

∂f

∂t
= div(Dr2 grad f) (8.96)
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which, on the surface of the sphere with unit radius, is identical with the diffusion
equation; and for solutions satisfying the initial condition

∂f

∂r

∣

∣

∣

∣

t=0

= 0, (8.97)

∂f
∂r = 0 is fulfilled forever.

Let us now examine what effect is exerted by the motion on the time dependence
of the probability distribution in question. The continuous phase of the colloidal
solution is a newtonian liquid for which the Navier-Stokes equation holds. We
assume that the colloidal particles are very small, thus their moment of inertia
may be neglected and the non-linear terms in the Navier-Stokes equation may be
omitted. Based on this assumption we may say that the medium flowing around
the particle does not exert any torque on the particle. However,this is only possible
for a given rotation rate of the particle. The direction of the particle is denoted by
n and the velocity field far from the particle should be

v = Gradv · r = (d̊ + ω)r. (8.98)

As the non-linear terms are neglected in the equations describing the motion, the
time derivative of vector n characterizing orientation is a homogeneous linear func-
tion of Gradv if we disregard Brownian motion:

dn

dt
= T Gradv, (8.99)

where T is a third-order tensor characteristic of the shape and orientation of the
particle.
Upon writing equation (8.99) for the components:

dni

dt
= Tijkvj,k, (8.100)

we can determine tensor T . For this, let us define a cartesian coordinate system
whose third axis coincides with the direction of n. As the size of n is uninteresting,
we take it for unity, from which it follows that in our coordinate system

dn3

dt
= 0, i.e. T3jk = 0. (8.101)

We assumed that the particle is of cylindrical symmetry; therefore, it has a sym-
metry plane perpendicular to axes x1 and x2 (among the non-zero components of
T cannot be involved an odd number of elements with subscripts 1 and 2). Thus
the non-zero components of T are T113, T131, T223 and T232. As axes 1 and 2 are
equivalent due to the cylindrical symmetry, correlations

T113 = T223, T131 = T232 (8.102)
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hold, which lead to
dn1

dt
= T113v1,3 + T131v3,1,

dn2

dt
= T113v2,3 + T131v3,2.

(8.103)

Rearranging the equations and introducing notations

a = T113 + T131, b = T113 − T131, (8.104)

we obtain

dn1

dt
= ad̊31 + bω31,

dn2

dt
= ad̊23 + bω32,

dn3

dt
= 0, (8.105)

the concise, invariant form of which is:

dn

dt
= a(δ − n ◦ n)d̊n + bωn (8.106)

by which form we dispose of the particular coordinate system.
Let us now define an arbitrary orientation vector r′ of a constant size:

r′ = λn, (8.107)

where λ is an arbitrary constant. On rearranging equation (8.106), we arrive at

dr′

dt
= a

(

δ − r′ ◦ r′

r′2

)

d̊r′ + bωr′. (8.108)

If the medium rotates like a rigid body, i.e. d̊ = 0, then, obviously, the orientation
vector also rotates with the same angular velocity; thus b = 1, with which the final
form of equation (8.99) becomes

dr′

dt
= a

(

δ − r′ ◦ r′

r′2

)

d̊r′ + ωr′. (8.109)

Thus the vector describing the orientation of the particles floats with this rate. It
may be noted that the value of a can be determined by the solution of the Navier-
Stokes equations and that Jeffery [81] has solved them for particles with the shape
of rotational ellipsoids.

The description of the evolution of the distribution function needs the additional
term

Jv = f
dr′

dt
(8.110)

to give account on the drift on the surface of the sphere. Taking also this into
account, instead of equation (8.96) the following expression is obtained:

∂f

∂t
= div

[

Dr2 grad f − af
(

δ − r ◦ r

r2

)

d̊r−fωr
]

(8.111)
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Let us now replace f by function ϕ defined in equation (8.93), then

∂ϕ

∂t
= div

[

Dr2 gradϕ − a(1 + ϕ)
(

δ − r ◦ r

r2

)

d̊r − ϕωr
]

(8.112)

Since ϕ is usually small and its integral with respect to the surface of the sphere
is zero, we define it as a series with respect to spherical functions and stop at the
first term:

ϕ =
1

2r2
rΞr, (8.113)

where Ξ is a second-order tensor of zero trace. Upon substituting this into the
differential equation, we arrive at

1

2r2
rΞ̇r = −3D

1

r2
(rΞr) + 3a

rd̊r

r2
+

5a

2r4
(rΞr)(rd̊r)− a

r2
rΞd̊r− 1

r2
rΞωr. (8.114)

As we took the first non-zero term of the series expanded with respect to spherical
functions, we omit from the third term (on the right side) the part belonging to
the omitted terms. Then we take the equation for tensor Ξ on the basis of the
quadratic forms of coordinates r at both the left and right sides:

Ξ̇ = −6DΞ + 6ad̊ +
3a

7

[

Ξd̊ + d̊Ξ − 2

3
(Ξ : d̊)δ

]

− Ξω + ωΞ. (8.115)

On collecting terms containing ω on the left side and introducing the objective time
derivative of Ξ, we obtain

Ξ̊ = 6ad̊ − 6DΞ +
3

7
a

[

Ξd̊ + d̊Ξ − 2

3
(Ξ : d̊)δ

]

. (8.116)

This equation corresponds to equation (6.105) which may readily be understood if
we introduce (instead of Ξ) variable α proportional to Ξ. As a matter of fact, if we
calculate the surface integral in the expression (8.95) of entropy by utilizing also
equation (8.113)

1

r2

∮

ϕ2 dA =
1

4r6

∮

(rΞr)2 dA =
2π

15
Ξ : Ξ

we may write that

s = s0(u) − kN

30
Ξ : Ξ. (8.117)

On comparing this expression with equation (6.1) and (6.9), we obtain

ξ =

√

kN

15
Ξ, α =

√

ρTkN

15
Ξ (8.118)

whose substitution into equation (8.116) leads to

α̊ = 6a

√

ρTkN

15
d̊ − 6Dα +

3a

7

[

αd̊ + d̊α − 2

3
(α : d̊)δ

]

. (8.119)
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If we restrict ourselves to small values of d̊, the last terms on the right side may be
neglected; however, in this approximation we arrive again at the equations of the
linear theory.

It should be noted that the equations derived are valid primarily for small con-
centrations. A usable correlation for higher concentrations may be obtained by
applying the considerations of Boucher.

Before finishing our analysis, it is important to note that equation (8.119) derived
by microscopic considerations is perfectly identical with equation (6.105) obtained
by using phenomenological thermodynamics. For coefficients H′

12 and H′
22 intro-

duced there, we obtain correlations

H′
12 = −3a

14
, H′

22 = 0. (8.120)

This agreement is partly reassuring, but calls attention partly to the fact that the
partial validity of equation (8.119) does not prove that the fluid contains rigid parti-
cles of cylindrical symmetry since it has not been assumed in the phenomenological
derivation of equation (6.105); hence, other microscopic models may lead to the
same result. Thus, for example measured data remaining within the range of va-
lidity of linear equations cannot decide whether the colloidal particles are elastic
spheres or rigid ellipsoids, since in section 8.2. we have obtained similar results.
However, the hypothesis applied for microscopic structure is supported by the nu-
merical agreement of coefficients with data calculated from measurements concern-
ing other physical phenomena. Nevertheless, care should also be taken here, as the
properties of spherical functions used in the approximation are always the same,
independently of the microscopic model and the physical phenomenon discussed.
In what follows, the motion of chain molecules will also be studied by applying
spherical functions.

8.5. Viscosity of polymers.

This part shows that the Rouse-Bueche theory [16,140] of liquids containing
chain molecules, (i.e., polymer solutions and melts) is in perfect accordance with the
results of non-equilibrium thermodynamics [33, 83, 106, 107]. First, the statistical
theory of liquids containing chain molecules will be summarized briefly; then the
Rouse-Bueche theory will be demonstrated in a slightly generalized form. As a first
step, the equilibrium configurations of chain molecules will be dealt with.

8.5.1. Equilibrium configuration of chain molecules. The simplest model
of chain molecules is the so-called free chain model. According to this model,
the polymer molecule consists of connected segments of uniform length which can
rotate freely. The molecule will be characterized by a vector pointing from one
of its ends to the other, and we assume that the segments of the molecule are
randomly arranged. Vector a determining the orientation of individual segments is
a random variable whose distribution function is uniform on the surface of a sphere
with the radius a. Vector r drawn from one end to the other is the sum of vectors
a characterizing the segments in the chain. It is also a random variable. Supposing
that the polymer molecule consists of numerous segments, the central limit theorem
of probability calculus can be applied, and we may say that the vector connecting
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the two ends is of normal distribution. As the distribution is three-dimensional, we
have to know the variance tensor and the mean value to determine it.The latter
quantities can be calculated from the mean value of vectors a of individual segments
and their variances by the well-known correlations

M(r) = NM(a), σ2(r) = Nσ2(a) (8.121)

where M is the mean value,
σ2 the variance tensor, and
N the number of segments in the chain.

Quantities characteristic for individual segments are defined by the following equa-
tions of probability calculus:

M(a) =

∮

r

4πa2
dA (8.122)

σ2(a) =

∮

[r − M(a)] ◦ [r − M(a)]

4πa2
dA (8.123)

where integration should be carried out on the whole surface of the sphere with
radius a.

The spherical integrals are easy to calculate by taking into account that the
elements of a spherical surface are perpendicular to the radius belonging to them;
thus,

r dA = a dA, a dA = r dA (8.124)

hold. By using these correlations, surface integrals can be transformed into volume
integrals:

M(a) =
1

4πa2

∮

r dA =
1

4πa2

∮

a dA =
1

4πa

∮

dA = 0 (8.125)

and

σ2(a) =
1

4πa2

∮

r ◦ rdA =
1

4πa

∮

r ◦ dA =

=
1

4πa

∫

(r ◦ ∇)dV =
1

4πa
δ

∫

dV =
1

4πa
δ

4πa3

3
=

a2

3
δ. (8.126)

On substituting these into equation (8.121) we obtain:

M(r) = 0, σ2(r) =
Na2

3
δ. (8.127)

The distribution density function of the end-to-end vector can be written as

f(r) = C exp

(

− 3r2

2Na2

)

(8.128)

where the value of normalization factor C is:

C =
1

a3

(

3

2πN

)3/2

. (8.129)

Notice that the distribution function obtained is very similar to the Boltzmann
distribution of a harmonic oscillator with thermal motion, since its distribution
density is
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f = C exp

(

− U

kT

)

= C exp

(

−rKr

2kT

)

, (8.130)

where K is the tensor characteristic for the quasi-elastic field,
k the Boltzmann constant, and
T the temperature.

This means that the vector connecting the ends of an N -member free chain behaves
similarly to the position vector of a harmonic oscillator if correlation

K = kTσ−2(r) (8.131)

holds.
The analogy is, as usual, not perfect, since the entropy of harmonic oscillators

can be calculated from distribution function (8.130) on the basis of equation

s = −k

∫

f ln f dV (8.132)

while for free chains it must also be considered that to the same end-to-end vector
different configurations may belong which influence significantly the entropy. The
entropy of the chain is derived as follows.

Let us determine first the distribution of vector a characteristic for the position
of segments by assuming that the value of the vector connecting chain ends is R.
We suppose that the distribution functions of individual segments are identical and
calculate conditional entropies and then summarize them according to

S = N

∫

s(a|R)f(R)dV + S(R). (8.133)

Since on the basis of the independence of the positions of individual segments, we
may say that the conditional distribution density of vector a depends only on R/N ;
thus, we may write

f(a|R) = f

(

a,
R

N

)

. (8.134)

which, for small values of R/N and also considering the isotropy of space, takes
the form

f(a|R) =
1

4πa2

(

1 + λ
R

N
a

)

(8.135)

These equations are strictly valid only for small R/N ; values, but on using equation
(8.133), it is sufficient since large R/N is highly improbable according to equation
(8.128). For determining λ, we may start from

M(a|R) =
R

N
, (8.136)

whose comparison with equation (8.135) leads to correlation

R

N
=

1

4πa2

∮

r

(

1 +
λR

N
r

)

dA =
1

4πa

∮
(

1 +
λR

N
r

)

dA =

1

4πa

∫

λR

N
dV =

λ

4πa

R

N

4πa3

3
(8.137)
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from which

λ =
3

a2
. (8.138)

Thus, the density function of conditional distribution sought is

f(a|R) =
1

4πa2

(

1 +
3

Na2
Rr

)

. (8.139)

Conditional entropy can be calculated from the equation

s(a|R) = −k

∮

f(a|R) ln f(a|R)dA. (8.140)

However, let us also take into consideration that due to the small value of R/N ,
the density function of conditional distribution differs only slightly from uniform
distribution. Based on this, we may write that

f(a|R) = f0(1 + f∗), (8.141)

where

f0 =
1

4πa2
and f∗ =

3

Na2
Rr (8.142)

On utilizing this, instead of equation (8.140), we may write

s(a|R) = −k

∮

f0(1 + f∗) ln f0 + f∗ − f∗2

2
dA =

= −k

∮

f0 ln f0 + f∗(f0 ln f0 + 1) +
f∗2

2
f0dA =

= s(a) − k
1

8πa2

∮
(

3

Na2
Rr

)2
dA =

= s(a) − 9k

8πN2a5

∮

(Rr)RdA = s(a) − 9k

8πN2a5

∫

R2dV =

= s(a) − 9kR2

8πN2a5

4πa3

3
= s(a) − 3k

2

(

R

Na

)2
,

(8.143)

where s(a) is the entropy of uniform distribution. In the calculations it has been
taken into account that f∗ is small; therefore, on expanding the integrand with
respect to powers of f∗, we may stop at the quadratic term. The entropy of the
whole chain is obtained from equation (8.133) as

S = Ns(a) − 3k

2Na2

∫

R2f(R)dV − k

∫

f(R) ln f(R) dV. (8.144)

This expression is usable also if the distribution of the vector connecting chain ends
has a non-equilibrium distribution but the distribution of individual segments is of
an equilibrium type. This is an obvious contradiction which will be resolved later.
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We will now examine how our results are influenced by interactions between the
segments. We keep further to our assumption that the vector connecting chain
ends has a normal distribution. This is not a strong restriction since random
variables consisting of the sum of many variables with the same distribution may
be approximated in a wide range by a normal distribution. The expected value of
the end-to-end vector is zero owing to the isotropy of space. The statement that
the variance tensor is approximately proportional to chain length is also true in the
case of interactions. We also assume that the individual segments are distributed
uniformly, but now they are not independent of each other. Since their expected
value is zero, the variance tensor is

σ2(r) =
∑

i,k

M(ai ◦ ak), (8.145)

where i and k denote the serial number of individual segments and summation is
done over all segments. If we now assume, for simplicity, that only the distributions
of neighboring segments are interrelated but those of farther ones are not, we may
write

σ2(r) =
∑

i

M(ai ◦ ai−1 + ai ◦ ai + ai ◦ ai+1). (8.145a)

Since the variance tensors of individual variables ai are identical, we obtain

σ2(r) = N
a2

3
δ + 2(N − 1)

a2

3
δR = N

a2

3

(

1 +
2(N − 1)

N
R

)

δ, (8.146)

where R is the correlation coefficient of the distributions of neighboring segments.
For large N , 1/N is negligible; thus

σ2(r) = N
a2

3
(1 + 2R)δ (8.147)

is obtained in which the value of R depends on the nature of interactions and the
temperature, as well.

Finally, we mention that if we wish consider the interactions between more re-
mote segments as well, further terms should be included in equation (8.145); but
this modifies only the meaning of R in equation (8.147). This problem will not
be dealt with further. On the other hand, it is also remarkable that when writing
conditional distribution function (8.135), we did not utilize the independence of the
distributions for individual segments; hence our equations derived for entropy may
also be used if interactions are considered.

8.5.2. Motion of chain molecules. When describing the motion of long
chain molecules we start from the assumption that expression (8.143) of conditional
entropy is applicable also when the liquid containing chain molecules is not in
equilibrium and, thus, the distribution of end-to-end vector differs from that given
by equation (8.128). This, as was mentioned earlier, is a contradiction, but it does
not lead to erroneous results. This assumption is made on the basis of the fact that
the shorter the polymer chain is, the sooner it assumes an equilibrium configuration.
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Thus we are justified in supposing that the distribution of individual segments inside
a short part of the chain correspond to that described by equation (8.139), although
the distribution of the end-to-end vector is far from equilibrium. The contradiction
may be resolved in the following way. The long polymer chain is divided into shorter
sections so that individual parts should satisfy equation (8.128). The individual
sections are substituted by harmonic oscillators with parameters given by equation
(8.131) whose entropy is calculated by equation (8.144). The problem of coupled
oscillators can be treated easily. It will be useful in later quantitative discussions
if we compare the equation of conditional entropy (8.143) with the characteristics
of the quasi-elastic field based on equations (8.131) and (8.147). The conditional
entropy for the whole chain is determined on the basis of equation (8.143)

S = S0 −
3k

2Na2
r2 (8.148)

where instead of R we use notation r. Considering equations (8.127) and (8.131),
we may write that

S = S0 −
3k

2Na2

Na2

3
rσ−2r = S0 −

1

T

rKr

2
= S0 −

1

T
U∗, (8.149)

where U∗ is the potential energy of the substituting quasi-elastic field.
For quantitative discussion, let us divide the long chain containing N segments

into M identical sections. The individual sections should be short enough for equa-
tions derived for conditional entropy to be valid to a good approximation, but long
enough for the distribution of the vector connecting chain ends to be approximated
by a normal distribution which is necessary for equation (8.131) to be applicable.
For long enough chain molecules, these two conditions can be satisfied simultane-
ously.

In this case, the chain molecule may be replaced by a point system consisting of
M +1 particles in which subsequent points are coupled by quasi-elastic forces. The
force acting on the j-th point mass is given by correlation

Fj = K(rj+1 + rj−1 − 2rj) (8.150)

where K is according to our earlier hypotheses and equations (8.131) and (8.147)

K =
3kTM

Na2(1 + 2R)
. (8.151)

Notice that equation (8.150) does not hold for particles at the ends of the chain.
Those relationships will not be examined here, but rather approached in a different
way later.

Let us first investigate classical mechanical motions determined by forces (8.150).
Equations of motion for individual particles are:

mr̈j = K(rj+1 + rj−1 − 2rj). (8.152)
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Their solution will be sought in the form

rj = A exp[i(jδ − ωt)]. (8.153)

On substituting the trial function into the differential equation we obtain

−mω2rj = κrj(e
iδ + e−iδ − 2), (8.154)

from which

mω2 = 2κ(1 − cos δ) = 4κ sin2 δ

2
(8.155)

results. This means that the differential equation system (8.152) is satisfied by all
functions in the form of equation (8.153) whose parameters ω and δ satisfy equality
(8.155). Since n is an integer, we may say that the value of δ falls between −π and
π. Let us now notice the analogy between functions of the form given by equation
(8.153) and traveling waves. Waves determined by +δ and −δ differ from each
other only in the direction of propagation; but in solutions representing standing
waves the two occur together. Thus in searching for standing waves, we may state
that δ is positive. The analogy with waves also helps overcome the difficulty that
the force for the chain ends has not been determined. If the chain end is free — this
corresponds to the chemical freedom of chain ends, as well — the standing wave
has here an antinode if the chain end is closed — e.g., if it is chemically bonded to
a loose network — a node can be observed. The two cases should be distinguished.
In the case when the two ends of the chain are both free or bonded, the whole chain
length is an integral multiple of the half wavelength, i.e.

Mδ = nπ, (8.156)

whence
δ = n

π

M
. (8.157)

Thus in the case of bonded chain ends for δ, M − 1 different possible values are
obtained. This means 2(M − 1) linearly independent particular solutions if we
consider also the independence of sinωt and cosωt, which makes a complete solution
system since the two ends do not move. In the case of free chain ends, n = M is
also allowed; thus 2M particular solutions exist to which two further particular
solutions are added by uniform translation.

The situation is somewhat different if one chain end is free and the other one is
bonded. Then the length of the whole chain is an odd multiple of the quarter of
the wavelength, i.e.

Mδ = (2n + 1)
π

2
(8.158)

from which

δ =
2n + 1

2M
π (8.159)

follows. Thus (M − 1) possible values can be assigned to δ which makes also a
complete set of solutions. Let us notice that the number of degrees of freedom for
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the oscillator chain is identical with those of the polymer chain if N = M . Further
on, M will be chosen correspondingly.

Let us now rewrite solution (8.153) into form

rj = A(t)eijδ. (8.160)

Then function A(t) is defined by differential equation

mÄ = KA(eiδ + e−iδ − 2) = −4K sin2 δ

2
A (8.161)

on the basis of equation (8.152). The solutions of this equation are well known; it
is shown here only for proving that the motion of the whole chain may be really
substituted by a system of independent harmonic oscillators, for which the law

Fn = −4K sin2 δn

2
An (8.162)

holds. To these, potential energy can be ascribed by the following equation

U∗
n = 2K sin2 δn

2
A2

n =
1

2
KnA2

n. (8.163)

Since there is no coupling between the oscillators, their thermal motions can be
treated individually. Before starting with this, we want to show that the oscillators
describing the motion of chain molecules in a flowing medium are floated along.

In order to prove this, force laws (8.152) are supplemented by the linear law of
the resistance of the medium by assuming that flow rate is a homogeneous linear
function of position vector:

mr̈j = K(rj+1 + rj−1 − 2rj) + β[(d̊ + ω)rj − ṙj ]. (8.164)

If we seek the solution in the form of equation (8.160), then for function A(t)
equation

mÄ = −4K sin2 δ

2
A + β[(d̊ + ω)A − Ȧ] (8.165)

is obtained which proves our previous statement.
Let us now proceed to the study of the thermal motion of individual oscillators

by assuming that the chain molecule is in the flow field. If neither the quasi-elastic
force acts on the moving point nor does the flow carry it along, then the density
function of probability distribution describing its position in space would satisfy
the law of diffusion, i.e., equation

ḟ = D∆f (8.166)

would be valid. This equation may be split in the usual way:

ḟ + div J = 0, J = −D grad f. (8.167)



190 VIII. APPLICATIONS OF THE THEORY

If we consider the quasi-elastic force for current in addition to thermal motion,
expression

J = −D grad f − D

kT
f gradU∗ (8.168)

should hold, as only this can ensure that a Boltzmann distribution would belong
to the stationary case. If we take also the effect of flow into account, correlation

J = −D grad f − D

kT
f gradU∗ + f(d̊ + ω)r (8.169)

is obtained, assuming that the individual forces exert their influence independently
of thermal motion. For simplifying calculations, the position vector of oscillators
will be denoted by r instead of An, since no different An-s will be needed simulta-
neously in the calculation.

Since f is a density function, it satisfies the partial differential equation

ḟ = D∆f +
D

kT
div(f gradU∗

n) − div[f(d̊ + ω)r]. (8.170)

Seeking the solution in form

f = C exp

(

−U∗

kT

)

(1 + ϕ) = f0(1 + ϕ), (8.171)

we obtain

f0ϕ̇ = f0D∆ϕ − f0
DKn

kT
r gradϕ − f0

Kn

kT
rd̊r−

− f0 gradϕωr − f0 gradϕd̊r + f0
Kn

kT
ϕrd̊r. (8.172)

If d̊ = 0, f0 satisfies the equation, i.e. ϕ = 0. It is correct to assume that for small
d̊, ϕ is also small; thus as a first approximation, the last two terms on the right
side may be omitted as small quantities of higher order. By dividing both sides of
the equation by f0 and rearranging it slightly, we arrive at

ϕ̇ + gradϕωr = D∆ϕ − DKn

kT
r gradϕ − Kn

kT
rd̊r, (8.173)

whose solution is sought in form
ϕ = rΞr (8.174)

and then we obtain

rΞ̇r + 2(Ξr)(ωr) = 2DtrΞ − 2DKn

kT
rΞr− Kn

kT
rd̊r. (8.175)

Both sides of the equation are quadratic polynomials of space coordinates. Based on
the identity of coefficients, it is seen that our trial function satisfies the differential
equation if and only if

trΞ = 0 (8.176)
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and

Ξ̇ + Ξω − ωΞ = Ξ̊ = −2DKn

kT
Ξ − Kn

kT
d̊ (8.177)

conditions are fulfilled. Hence equations for individual oscillators are the following:

Ξ̊n = −2DKn

kT
Ξn − Kn

kT
d̊. (8.178)

Ξ-s together determine the shape of the chain molecule in the statistical sense;
thus, Ξ-s are dynamic state variables.

In order to arrive at state parameters ξ and α used in our thermodynamic consid-
erations, we should determine the dependence of the entropy of chain molecules on
Ξ-s. Since the distributions of individual oscillators are independent, their entropy
can be determined separately and their sum is the entropy of the macromolecule.
If we, for simplicity, consider only chains consisting of segments without interac-
tion, calculations may be carried out similarly to those in equation (8.144). The
conditional entropy of the oscillator is proportional to potential energy as shown
in equation (8.149) and to the mean value of which tensor Ξ satisfying equation
(8.176) does not contribute, as the surface integral of spherical function ϕ given by
equation (8.174) is zero. Therefore, for entropy, we have

sosc = −k

∫

f0(1 + ϕ)[ln f0 + ln(1 + ϕ)]dV =

= −k

∫

f0 ln f0 dV − k

2

∫

f0ϕ
2 dV = s0osc −

k

2

∞
∫

0

f0

∮

(rΞr)
2
dAdr =

= s0osc −
k

2

∞
∫

0

f0
8π

15
r6Ξ : Ξdr = s0osc − k

(

kT

K

)2
Ξ : Ξ. (8.179)

In this, we utilized the spherical function nature of ϕ and also that ϕ is small, thus,
on expanding ln(1 + ϕ) into a series we stopped at the quadratic term. Thus, the
entropy of the whole chain is given by

S = S0 − k
∑

n

(

kT

Kn

)2
Ξn : Ξn. (8.180)

Let now L denote the number of polymer chains in unit volume. The specific
entropy is

s = s0 −
kL

̺

∑

n

(

kT

Kn

)2
Ξn : Ξn. (8.181)

On comparing this expression with the general form of entropy given by equation
(4.65), the connection between parameters ξn and Ξn can readily be seen:

ξn =

√

2kL

̺

kT

Kn
Ξn. (8.182)
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It is also easy to turn to variables

αn =
√

̺Tξn =
√

2kTL
kT

Kn
Ξn, (8.183)

for which the equation can be obtained from equation (8.178):

α̊n = −2DKn

kT
αn −

√
2kTLd̊. (8.184)

It is important to note that these equations are perfectly identical with those ob-
tained by thermodynamic considerations (equations (6.144)). Stress equations for
shear flow are obtained in the complex form on the basis of equation (6.151) and
in the real form based on equation (6.152)

Let us now calculate complex shear stress for straight chain polymer molecules as
an example. On comparing equations (6.144) and (8.184), we obtain the coefficients
of Onsager’s linear laws

L0j =
√

2kTL, Lj =
2DKj

kT
(j=1, 2, . . . , N) (8.185)

whose substitution into equation (6.151) gives

tv =
L00

2
κ +

1

2

∑

j

2kTLκ

Lj + iκ
. (8.186)

For shortening the symbols, we introduce quantities:

τj =
1

Lj
=

kT

2DKj
and η∞ =

L00

2
(8.187)

we may write that

tv = η∞κ + kTL
∑

j

τjκ

1 + iκτj
. (8.188)

For examining quantities τj more thoroughly, let us compare equation (8.187) with
equations (8.151), (8.162) and (8.157) by considering that M = N :

τj =
a2(1 + 2R)

24D sin2 jπ
2N

. (8.189)

If the number of segments (i.e., N) is large, relaxation times, τj , rapidly decrease
for small j-s with increasing j; hence their role becomes smaller and smaller. For
small j-s, instead of equation (8.189) approximate expression

τj =
a2N2(1 + 2R)

6Dπ2j2
=

τ1

j2
(8.190)

is used. For large j-s the role of individual degrees of freedom becomes smaller and
smaller. After comparing equations (8.189) and (8.190) it is seen that summation
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may be extended up to infinity without making a significant error. Proceeding this
way, we obtain

tv = η∞κ + kTL

∞
∑

j=1

τ1κ

j2 + iκτ1
, (8.191)

where the infinite series has the interesting feature that the sum can be given in
closed form based on the partial fraction expansion of the complex function cot(z):

tv = η∞κ +
1

2
kTLi

[

1 − π
1 + i

2

√
2κτ1 cot

(

π
1 + i

2

√
2κτ1

)]

. (8.192)

On separating real and imaginary parts, for shear stress, we obtain

τ = η∞κ +
1

4
kTLπ

√
2κτ1

sinhπ
√

2κτ1 − sin π
√

2κτ1

cosh π
√

2κτ1 − cos π
√

2κτ1
(8.193)

whereas for normal stress,

σ1 = −σ2 = kTL

{

1

2
− π

√
2κτ1

4

sinhπ
√

2κτ1 + sin π
√

2κτ1

cosh π
√

2κτ1 − cos π
√

2κτ1

}

, (8.194)

results.

8.5.3. Chemical relaxations in loose networks. When studying the chemi-
cal relaxations in loose networks, we assume that the medium consists of long chain
molecules whose ends are fixed to the network by chemical bonds. These bonds are
assumed to be in chemical equilibrium: i.e., from time to time the chain ends are
set free. The thermal motion of free chain ends is supposed to be fast as compared
to other processes; correspondingly, the vector connecting free chain ends has a
normal distribution and its density function is

f0 =
1

(2π)3/2σ3
exp

(

− r2

2σ2

)

(8.195)

where, according to equation (8.147),

σ2 = N
a3

3
(1 + 2R). (8.196)

The chains fixed to the network are carried along by the motion of the medium
together with the network. Let the distribution density function of vector r con-
necting the fixed or just liberated chain ends be denoted by f(r), that of bonded
ends by f1(r) and the probability of a given chain being just bound by p.

The time course of function f1(r) can be described by an equation analogous to
equation (8.170) but it contains also a term characterizing chemical reaction:

∂

∂t
(f1pL) = −div[f1pL(d̊ + ω)r] − k∗f1pL + k∗∗(1 − p)Lf0, (8.197)
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where L is the number of chains in a unit volume. The first term on the right
side describes the phenomenon that flow carries along the bonded chain ends, the
second term accounts for the effect of bond cleavage on chain ends, whereas the
third term characterizes the process of chemical bonding of free chain ends to the
network. Chemical reactions are assumed to be reversible and of first order, k∗ is
the reaction rate constant of the liberation of chain ends, and k∗∗ is that of the
opposite reaction. Corresponding to chemical equilibrium, it holds that

k∗pL − k∗∗(1 − p)L = 0 (8.198)

whose utilization for simplifying equation (8.197) leads to

∂f1

∂t
= −div[f1(d̊ + ω)r] − k∗(f1 − f0) (8.199)

In order to determine function f1 let us start from

f1 = f0(1 + ϕ) (8.200)

whose substitution into the differential equation results in

f0
∂ϕ

∂t
= f0σ

−2rd̊r + f0σ
−2ϕrd̊r − f0∇ϕd̊r − f0∇ϕωr − k∗f0ϕ. (8.201)

If we restrict our study to small d̊ values by neglecting the second and third terms
on the right side, we obtain

∂ϕ

∂t
= σ−2rd̊r −∇ϕωr − k∗ϕ. (8.202)

Let us now seek function ϕ in the form of a homogeneous quadratic order polyno-
mial:

ϕ = rΞr. (8.203)

On the basis of equation (8.202), the form of the equation for tensor Ξ is

r
∂Ξ

∂t
r = σ−2rd̊r − 2(Ξr)(ωr) − k∗rΞr, (8.204)

which, after rearrangement gives

Ξ̊ = σ−2d̊ − k∗Ξ. (8.205)

For segments moving independently of each other, variables ξ and α can readily be
introduced by the same method as was done earlier. The entropy for one chain is
calculated as in equation (8.179):

schain = s0chain − kσ4Ξ : Ξ. (8.206)
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Entropy for unit mass is:

s = s0 −
1

2

2kLp

̺
σ4Ξ : Ξ. (8.207)

Thus variables ξ and α are:

ξ =

√
2kLp

̺
σ2Ξ, α =

√

2kTLpσ2Ξ. (8.208)

By the use of variable α the following equation is obtained instead of equation
(8.205):

α̊ =

√

2kLpk∗∗

k∗ + k∗∗
d̊ − k∗α, (8.209)

where equation (8.198) has also been utilized for calculating p.
It has to be emphasized that the existence of a dynamic variable has been derived

by structural considerations and that the equations thus obtained are in a full
accordance with the results of macroscopic thermodynamic theory.

8.6. Motion of liquid crystals.

Liquid crystals are anisotropic liquids. This means that motions connecting
equivalent configurations are not identical with the orthogonal group even for undis-
torted states nor do they contain the orthogonal group as a subgroup; in short, the
different directions are not equivalent.

Let us study, first, group A of motions transferring undistorted states into each
other for an arbitrary material. The reader should be reminded that undistorted
states are configurations in which the medium (being at rest for a long enough time)
becomes stress-free. (Under usual experimental conditions, barometric pressure
which is always present as an additive term is not taken into consideration.) Group
A contains the orthogonal group as a subgroup since rotations do not cause essential
changes in the material, and inversions should be dealt with only by convention since
real media cannot be turned “inside out” as gloves. On the other hand, group A is
part of the unimodular group, as a volume change always results in the appearance
of a stress. From this, due to the maximality of the orthogonal group, it follows
that group A may be only of two kinds: it is either identical with the orthogonal
group (in which case the medium is a solid) or it is identical with the unimodular
group (the medium is then called a fluid).

Let us now proceed with our study to groups A∗ of motions connecting equivalent
undistorted states. From the definition of group A∗, it follows that it is part of group
A. If group A∗ contains the orthogonal group and, thus, it is identical with group
A, then the medium is isotropic. There is not much variety in an isotropic medium
it is either an isotropic fluid or an isotropic solid.

The situation is completely different for anisotropic media. If the medium is a
solid, group A∗ is a real part of the orthogonal group and the possible structures of
group A∗ are discussed in the introductory text books on crystallography by taking
into account also the lattice structure of solids.
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For fluids, the problem is more complex. In this case, group A∗ is not part of
the orthogonal group and as a subgroup it contains at most only one real subgroup
of it. At present, these subgroups are not yet completely known. A single example
is enough to illustrate that such a subgroup really exists in the unimodular group.
Let us consider a motion in space which translates an arbitrarily chosen and fixed
unit vector e into vector λe parallel to it. In order to formulate the example also
in components, let us take a Cartesian coordinate system whose axis x1 points to
the direction of the vector e and consider motions whose matrix is





a11 a12 a13

0 a22 a23

0 a32 a33





and the absolute value of their determinants is unity. These motions form a group,
which can easily be proved partly on the basis of the multiplication rule of deter-
minants and partly on that of matrix multiplication, since the matrix product C
of motion A and B may be given in the form

cij = aikbkj . (8.210)

The matrix consisting of elements cij has the desired property if cij = 0 in each
case when i 6= 1 and j = 1. Matrices aik and bkj also have these properties; thus if
i 6= 1 and j = 1, then

ci1 = aikbk1 = ai1b11 = 0. (8.211)

It should also be shown that the inverse of any element has the same property. As
motion has always an inverse, it is enough to prove that a−1

21 = a−1
31 = 0 is also

true for inverse motion A−1. Based on the concept of an inverse, we may write
according to correlation

aika−1
kj = δij (8.212)

that
a2ka−1

k1 = 0 and a3ka−1
k1 = 0, (8.213)

or, in detail,
a22a

−1
21 + a23a

−1
23 = 0

a32a
−1
21 + a33a

−1
31 = 0,

(8.214)

which is a homogeneous linear equation system with unknowns a−1
21 and a−1

31 . The
determinant D of the equation system is not zero, as

detA = a11D = +1 (8.215)

and, thus, the equations have the only solution

a−1
21 = a−1

31 = 0. (8.216)

Thus, the above motions form a group and this group does not contain the orthog-
onal group since, for example, the motion given by matrix





0 0 1
1 0 0
0 1 0




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belongs to the orthogonal group, but it does not belong to the group in question.
On the other hand, it is not part of the orthogonal group since, for example, motion
represented by matrix





1 0 0
0 2 0
0 0 1

2





belongs to the group in question, but does not belong to the orthogonal group. Now
we can define liquid crystals in an exact manner. Media are called liquid crystals
if the group of motions connecting equivalent undistorted states A∗ is not identical
with the unimodular group and are not part of the orthogonal group. The group A∗

is called the isotropy group of the medium. We mention that the group-theoretical
classification of liquid crystals is not yet known [162].

8.6.1. Entropy of nematic liquid crystals. Media with a director e (a
particular direction) will be considered here; two configurations are equivalent if
the directors are the same. (Directions e and −e are regarded to be equivalent.)
These requirements define nematic liquid crystals.

At first glance it seems obvious that this direction is a local state parameter;
however, function s = s(u, v, e) characterizing specific entropy cannot depend on e

due to the isotropy of space. From this, it follows that function s = s(u, v) cannot
describe anisotropic properties. In other words, we may also say that if entropy
depends only on internal energy and specific volume in the liquid, no effect appears
which would bring the orientations in neighboring points into harmony; thus, the
direction of vector e would become a random and quickly changing function of
space coordinates even if the distribution of e was initially homogeneous, but the
medium was thoroughly stirred. Thus, the existence of a function s = s(u, v, e)
should be rejected; and instead of e, another suitable variable should be sought.
The solution of the problem is provided by the introduction of the entropy function
in the form

s = s(u, v, e, Grad e). (8.217)

Similarly to Frank [51] we assume that the entropy function can be well approxi-
mated by the second-order polynomial of Grade. For simplicity, volume changes
will not be considered and, thus, variable v will not be dealt with; further, we as-
sume local equilibrium: i.e., no further variables will be introduced. As entropy is
an isotropic function of its variables, equality

s = s(u, e, Grad e) = a(u, Qe,QT Grad eQ) (8.218)

holds for any orthogonal tensor Q. For convenience, let us take a Cartesian coor-
dinate system whose axis x1 points to the direction of e in the chosen point; hence
the matrix of tensor Grad e is:

Grad e = E =





0 0 0
e2,1 e2,2 e2,3

e3,1 e3,2 e3,3



 (8.219)

(The first row contains only zero elements because the derivative of any unit vector
is perpendicular to the unit vector itself.)
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Let us first seek the linear expressions satisfying requirement (8.218). Though
linear polynomials usually have the form

p1 = aikek,i, (8.220)

in our case the system of coefficients aik can only be of such a nature that the
tensor corresponding to them should be invariant with respect to orthogonal trans-
formations belonging to the isotropy group. On the basis of reflections onto a plane
perpendicular to axis x1, among aik−s no elements may be present in whose indices
an odd number of 1-s, 2-s or 3-s occurs. Since in our coordinate system, ei,k = 0
if k = 1. Therefore, aik can freely be chosen if k = 1; thus, let aik be zero. Hence
only a22 and a33 remain as non-zero elements. By utilizing the symmetry plane and
exchanging axes x2 and x3, it is obvious that a22 = a33 and thus for polynomial p1

it may be written that

p1 = a22e2,2 + a22e3,3 = a22 div e. (8.221)

The procedure is similar for quadratic polynomials. Then

p2 = aijklek,iel,j , (8.222)

holds, in which equalities
aijkl = ajilk (8.223)

are also valid. In the case of a non-zero coefficient among indices aijkl, only an
even number of 1-s, 2-s and 3-s may be present; and the last two indices can only
be 2 or 3 according to our convention. The value of elements does not change if we
exchange indices 2 and 3. All this follows from the symmetry rules utilized, i.e. for
non-zero elements we may write

a1122 = a1133, a2222 = a3333,

a2233 = a3322, a2323 = a3232,

a2332 = a3223.

(8.224)

From a rotation around axis x1 by an angle α, a lengthy but elementary calculation
gives

a2222 = a2332 + a2323 + a2233. (8.225)

Thus polynomial p2 may be written as

p2 = a1122(e
2
2,1 + e2

3,1) + a2332(e
2
2,2 + e2

3,3 + 2e2,3e3,2)+

+ a2323(e2,2 + e3,3)
2 + a2233(e

2
2,2 + e2

3,3 + e2
2,3 + e2

3,2). (8.226)

On writing this into an invariant form, we obtain

p2 = a2233E : E + a2332E : ET + a2323(trE)2 + (a1122 − a2233)(Ee)2 (8.227)

From this, it is apparent that all terms in this equation are invariant to changing
the direction e into its opposite. (Here notation E = Grad e is used.) This is not
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true, however, for polynomial p1, given by equation (8.221), which changes sign by
changing the direction e into its opposite. This means, at the same time, that if e

and −e are equivalent, then a22 = 0; hence the form of entropy function satisfying
equation (8.218) may only be

s = s0(u) − 1

2ρT

[

k22E : E + k24E : ET + (k33 − k22)(Ee)2+

+(k11 − k22 − k24)(trE)2
]

(8.228)

where notations
k11 = −2̺Ta2222, k22 = −2̺Ta2233,

k33 = −2̺Ta1122, k24 = −2̺Ta2332
(8.229)

are introduced for uniformity with the notations of Frank [51, 127] widely accepted
in the literature.

With free boundary conditions and E = 0, the entropy should be maximum
which means that in the case of homogeneous orientation the medium is at equilib-
rium. This also means that on the right side of equation (8.228) the expression in
brackets is a positive definite form in the algebraic sense, hence, for the coefficients
inequalities

k11 ≥ 0, k22 ≥ 0, k33 ≥ 0,

k22 ≥ |k24|, k11 ≥ 1

2
(k22 + k24)

(8.230)

should hold on the basis of equations (8.229) and (8.226). In the last two cases
equality can only exist if both sides are equal to zero.

8.6.2. Entropy balance. The entropy balance of liquid crystals may also be
given by general equation (4.35). Due to the assumption of local equilibrium, en-
tropy current may be interpreted by equation (4.41). However, for convenience,
equation (4.42) describing entropy production should be modified. One of the rea-
sons for this is that now there are no dynamic variables among local state param-
eters, and the other is that tensor E = Grad e is a state parameter which had not
been considered when writing equation (4.34). For simplicity, we restrict ourselves
to one-component liquid crystals which means that neither diffusion currents nor
component sources have to be taken into consideration. As a further simplification,
we assume that the medium is an insulator (j = 0), isothermal (grad 1/T = 0) and,
finally, electric and magnetic polarization is reversible, i.e. equalities

1

T
(E + v × B) +

∂s

∂p
= 0,

1

T
B +

∂s

∂pm
= 0 (8.231)

hold. On using these assumptions and considering also equation (8.228), for entropy
production

Tσs = ts : d̊ + div(~ωbΠ) + Π : Grad ~ω + ̺T
∂s

∂E
: E̊ + ̺T

∂s

∂e
e̊ (8.232)

is obtained, where ts is the symmetric part of Cauchy’s stress, d̊ the symmetric part
of the velocity gradient (a liquid crystal is also a fluid; thus the present configuration
is regarded as a reference configuration) and ~ω = 1

2 rotv.
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In the previous expression of entropy production the physical meaning of ~ωb,
Π and m should be clarified. As in liquid crystals the direction e is a preferred
direction and the rotation of e is a result of various interactions. The hypothesis is
obvious that ~ωb is connected to the rotation of vector e, i.e.

~ωb = e × e̊. (8.233)

An objective time derivative is used on the right side as ~ωb is the angular veloc-
ity relative to the medium which is obviously perpendicular to e. Naturally, Π

describes surface interactions causing the rotation of vector e and, therefore, the
existence of constraint

eΠ = 0 (8.234)

is easily understood. It should be mentioned that the moment of inertia for
molecules is again neglected in the macroscopic sense, i.e., we assume that the
internal moment of momentum and the rotational energy are zero in accordance
with the derivation of equation (4.26) for internal energy balance.

For convenience, it is expedient to introduce the polar tensor

B = −e × Π. (8.235)

(~ωb is an axial vector, whereas e and e̊ are polar vectors; tensor Π is axial in its first
subscript, but polar in its second subscript. This mixed character is eliminated by
introducing B which is a polar tensor.) After some rearrangement, we may write

Tσs = e̊

(

̺T
∂s

∂e
+ Div B

)

+ E̊ :

(

̺T
∂s

∂E
+ B

)

+ d̊ : (ts + ET B), (8.236)

where equalities
Grad e̊ = E̊ + Ed̊ + e × Grad ~ω (8.237)

and
Π = e × B (8.238)

following from equation (8.235) have been utilized.
Let us now deal with the effect of electric field. For electric fields that are not too

strong, entropy given by equation (8.228) is complemented with terms describing
electric polarization and thus it becomes

s = s(u, E,p) = s(u, E, 0) − ̺

2TE0

[

1

χ⊥
p2 +

(

1

χ‖
− 1

χ⊥

)

(pe)2
]

; (8.239)

where p is the specific electric dipole moment, χ‖ the dielectric susceptibility in
direction e and χ⊥ the dielectric susceptibility in the perpendicular directions.
This also means that the right side of equation (8.236) given for entropy production
density contains term

∆(Tσs) = −̺2

ε0

(

1

χ‖
− 1

χ⊥

)

(pe)(p̊e) (8.240)
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as well. Here only the term characterizing electric polarization is written, since we
only want to show that equation (8.236) describes also the effect of the electromag-
netic field if a suitable entropy function is used.

The expression given is readily identifiable with that of the power of torque
exerted by the electric field. To this, on the one hand, the reversibility of electric
polarization should be taken into account; thus,

E + v × B = −̺T
∂s

∂p
=

̺

ε0χ⊥
p +

̺

ε0

(

1

χ‖
− 1

χ⊥

)

(pe)e, (8.241)

and, on the other hand, also that the power density of torque may be given in the
form of ~ωb̺m. Based on this and utilizing equations (2.50) and (2.233), we obtain:

~ωb̺m = ̺(e × e̊)

{

p ×
[

̺

ε0

(

1

χ‖
− 1

χ⊥

)

(pe)e

]}

=

=
̺2

ε0

(

1

χ‖
− 1

χ⊥

)

(pe)(e × e̊)(p × e) =

= −̺2

ε0

(

1

χ‖
− 1

χ⊥

)

(pe)(e × e̊)(e × p) = ∆(Tσs)

(8.242)

where vector algebraic transformation

(e × e̊)(e × p) = [(e × e̊) × e]p = e̊p (8.243)

has also been applied. Equality (8.242) shows that equation (8.236) is correct also
in the presence of an electric field. Analogous derivation may be used for magnetic
polarization.

8.6.3. Conditions of equilibrium. For establishing the conditions of equilib-
rium, we start again from the form of entropy production given by equation (8.236).

The rate of processes is described by e̊, E̊ and d̊, and they will be regarded as gen-
eralized currents. However, coefficients are now not necessarily zero, as the currents
chosen are not arbitrary since equalities following from vector e being a unit vector

e̊e = 0 (8.244)

and
eE = 0 (8.245)

hold, as well as that obtained by its derivation with respect to time,

e̊E + eE̊ = 0 (8.246)

which may be considered as constraints. To these, the symmetric nature of d̊ and
the condition that only motions with unchanged volume are considered have to be
added and then tr d̊ = 0.

The above constraints can be utilized in different ways. The procedure is the
simplest in a Cartesian frame. Then equation (8.244) means the application of one;
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equation (8.246) that of three constraints. That is, among the 12 components of

e̊ and E̊, only 8 are independent. We may arrive at independent currents in the
following way: Multiplying the linear constraints by suitable factors and adding
them to the entropy production, the coefficients of four current components can be
made zero. After that, the remaining 8 current components are already linearly
independent; thus, the condition of equilibrium is that their coefficients should
also be zero. Hence we arrived at the result that by multiplying the constraints
by suitable factors and adding them to the entropy production, the coefficients of
currents became zero. Since equation (8.246) represents a vectorial constraint, the
multiplier belonging to it can also be regarded as a vector. Carrying out procedures,
we obtain:

Tσs = e̊

(

̺T
∂s

∂e
+ Div B + µe − E~λ

)

+

+ E̊ :

(

̺T
∂s

∂E
+ B − e ◦ ~λ

)

+ d̊ :
[

ts + (ET B)so
]

, (8.247)

whence the conditions of equilibrium are

̺T
∂s

∂e
+ Div B + µe − E~λ = 0,

̺T
∂s

∂E
+ B − e ◦ ~λ = 0,

tso = −1

2

(

ET B + BT E
)

+
1

3
tr(ET B)δ.

(8.248)

When writing our last equation, we took into account that d̊ is a symmetric tensor of
zero trace; thus its coefficient is a symmetric and zero-trace part of tensor ts +EB.
Notation tso refers to the symmetric zero-trace part of Cauchy’s stress. In the
solution of the equations obtained, constraints (8.244) and (8.246) should also be
utilized. The antisymmetric part of the stress tensor can be determined from the
balance equation of the moment of momentum (equation (4.25)) at the end of the
calculations.

For determining the multiplicators, let us carry out a scalar multiplication of the
first equation by e and that of the second (tensorial) equation by e from the left.
Also utilizing correlations eB = 0 and eE = 0, we arrive at

µ = −̺Te
∂s

∂e
− eDiv B, ~λ = ̺Te

∂s

∂E
. (8.249)

The substitution of the expression obtained for ~λ into the original equations gives

̺T
∂s

∂e
+ Div B + µe − ̺Te

∂s

∂E
ET = 0,

B = −̺T
∂s

∂E
+ e ◦ e̺T

∂s

∂E

(8.250)

where B from the second equation can be substituted into the first one:

̺T
∂s

∂e
− Div

(

̺T
∂s

∂E

)

+ 2µ∗e = 0,

2µ∗ = µ + ̺TE :
∂s

∂E
+ ̺TeDiv

∂s

∂E
.

(8.251)
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The first equation obtained may be identified with the Euler-Lagrange equation
belonging to the variation problem specified by the Lagrangian:

L = ̺Ts (8.252)

with the condition e2 = 1. In fact, entropy is maximum in adiabatic equilibrium.
However, if we consider also thermostatic equality

T

(

∂S

∂X

)

U

= −
(

∂F

∂X

)

T

(8.253)

where F is the free energy,
U the internal energy, and
X some extensive parameter,

then equations (8.251) may be identified with the Euler-Lagrange equations be-
longing to the principle of minimal free energy. It should be noted that the latter
procedure is the correct one, since in the former case the changes in T have been
neglected.

By solving equation (8.251), function e(r) can be determined. From this, E

may be obtained by derivation; then by using equations (8.250) B and (8.235),
the actual value of Π can be calculated. When knowing quantities E and B, the
value of tso may be determined by substituting into the last equation of (8.248).
The function w(t) can also be calculated on the basis of equation (4.25). The
calculation can, in principle, be carried out although it is very lengthy; therefore,
the application of the theory will be shown by the simple example of the twisted
nematic cell.

Let the nematic liquid crystal be situated between parallel planes x1 = 0 and
x1 = d and let us assume that its direction is everywhere perpendicular to axis x1

and that it depends only on x1.
Hence,

e = cos αe2 + sin αe3, α = α(x1), (8.254)

where e is the direction of the director; and e1, e2 and e3 are unit vectors showing
to the direction of x1, x2 and x3. Let us assume the boundary conditions α(0) = 0
and α(d) = α0 for function α(x1). For simplicity, let m be zero, i.e. let us disregard
the effect of electric and magnetic fields. Tensor E is easy to determine, since
obviously

E = e ◦ ∇ =
∂e

∂x1
◦ e1 = α′(− sin α e2 + cos α e3) ◦ e1 = α′(e1 × e) ◦ e1 (8.255)

where α′ is the derivative of function α(x1). As e and e1 are perpendicular to each
other at every point, therefore

Ee = 0, trE = 0, E : ET = 0. (8.256)

Hence, the equation of entropy (8.238) simplifies into

s = s0(u) − k22

2̺T
E : E = s0(u) − k22

2̺T
α′2 (8.257)
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Whence

̺T
∂s

∂E
= −k22E and ̺T

∂s

∂e
= 0 (8.258)

are obtained, the substitution of which into equation (8.250) results in the following
form for B:

B = k22E = k22α
′(e1 × e) ◦ e1. (8.259)

For determining function α(x1), expressions of ̺T ∂S
∂E

and E are substituted into
equation (8.251). This gives

k22
∂

∂x1
[α′(e1 × e)] + 2µ∗e = k22α

′′e1 × e + k22α
′2e1 × (e1 × e) + 2µ∗e =

= k22α
′′e1 × e − k22α

′2e + 2µ∗e = 0, (8.260)

from which
k22α

′′ = 0 and 2µ∗ − k22α
′2 = 0 (8.261)

results as e and e1 × e are perpendicular to one another. The solution of the dif-
ferential equation obtained for function α(x1), satisfying also the former boundary
conditions is

α(x1) =
α0

d
x1. (8.262)

Let us now determine tensors t and Π. The symmetric part of the stress tensor
may be calculated from equation (8.248) as

tso = −k22α
′2

(

e1 ◦ e1 −
1

3
δ

)

. (8.263)

The evaluation of the antisymmetric part starts with the determination of tensor
Π according to equation (8.238):

Π = k22e × E = k22α
′[e × (e1 × e)] ◦ e1 = k22α

′e1 ◦ e1. (8.264)

This tensor is constant as is seen from equation (8.262). Thus its divergence is
zero; consequently, w(t) = 0 according to equation (4.25), and Cauchy’s stress is
symmetric in this case.

Our results can be summarized, as follows: The rotation of the director of the
twisted nematic cell is stationary in the absence of external fields, and the liquid
crystals exert a torque of k22α

′ per unit surface on the boundary planes of the cell
and a pressure of k22α

′2.

8.6.4. Motion of liquid crystals. In determining the laws of motion for
liquid crystals we start from expression (8.236) of entropy production. However,

care should be taken in writing Onsager’s linear laws, since quantities e̊, E̊ and d̊

describing the rate of processes are not independent: relations (8.244) and (8.246)
hold for them in each point. Neither are the coefficients in the expression of entropy
production independent forces.

In solving this problem, several methods can be used. One of them is that we
apply linearly independent currents. The disadvantage of this method is that it
spoils the covariant formalism.
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The other method is based on the fact that Onsager’s linear laws can be given
by virtual forces also for linearly not independent currents; in such a case, the
fulfillment of constraints has to be ensured by correlations between coefficients
Lik. The shortcoming of this method is that numerous Lik parameters have to be
introduced which make calculations unnecessarily complicated.

In what follows we shall use a third approach which is based on the direct
application of the local form of Gyarmati’s variational principle given by equation
(4.68).

First, we take the local form of Gyarmati’s principle in energy picture and then
look for the extrema with constraints (8.244) and (8.246) by varying e̊, E̊ and d̊. For
the formulation and solution of the variational problem, first, determine the possible
form of dissipation potential Φ(̊e, E̊, d̊). Dissipation potential is a homogeneous
quadratic function of the above variables where the coefficients depend in some
way on local state parameters. In our case, this means that in addition to these
variables, Φ may depend also on the temperature, e and E. In the simplest case
— if we restrict ourselves to small deformations — the dependence on tensor E is
negligible for nematic liquid crystals; hence

Φ = Φ(̊e, E̊, d̊, e, T ) (8.265)

may be written.
In the following we restrict our study to isothermal motions; therefore, we dis-

regard variable T . Since the above dissipation potential is an isotropic, scalar
function of its variables, which also shows the symmetry relations of the medium,
it obviously holds that

Φ(Q̊e, QE̊Q
T
, Qd̊Q

T
,Qe) = Φ(̊e, E̊, d̊, e) (8.266)

where Q is an arbitrary orthogonal tensor. (We note that in colesteric liquid crys-
tals, equation (8.266) is valid only if detQ = 1.) Since the selection between e and
−e is completely arbitrary, the relationship

Φ(−̊e,−E̊, d̊,−e) = Φ(̊e, E̊, d̊, e) (8.267)

should also necessarily hold.
Thus the quadratic form of the dissipation potential may have the following

form:

Φ =
1

2
e̊R11e̊ + e̊R12 : E̊ + e̊R13 : d̊ +

1

2
E̊ : R22 : E̊ + E̊ : R23 : d̊ + d̊ : R33 : d̊,

(8.268a)
where R11 is a second order,

R12 and R13 third order, and
R22, R23 and R33 fourth order tensors.

For clarity, let us write our equation also in orthogonal components:

Φ =
1

2
R11

ij e̊i̊ej + R12
ijk̊eiE̊jk + R13

ijk̊eid̊jk +
1

2
R22

ijklE̊ijE̊kl+

+ R23
ijklE̊ij d̊kl + R33

ijkld̊ij d̊kl,
(8.268b)
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where i, j, k, l denote subscript 1, 2 and 3, and summation should be carried out for
all of them from 1 to 3. It is important to emphasize that this equation is completely
general: it does not show any symmetry, and coefficients R are functions of e.

Let us now examine which conditions should be satisfied by tensors R for function
Φ, corresponding to constraints (8.266) and (8.267). It is apparent from equation
(8.266) that every orthogonal transformation leaving the vector e unchanged leaves
tensors R also unchanged. Orthogonal transformations converting vector e into
vector −e leave tensors R11, R12, R22 and R23 unchanged, but they transform
tensors R13 and R23 into their −1-fold.

To establish the form of the tensors, let us temporarily define a Cartesian coor-
dinate system whose axis x1 points to direction e. Calculations will be carried out
with the subscripts; this method is based on the rule that the components trans-
form in the same way as do the product of vector components. Individual tensors
will not be given now, only subscripts will be provided in parentheses.

The following transformations will be used:
Q1: reflection with respect to the plane perpendicular to axis x1:

x′
1 = −x1, x′

2 = x2, x′
3 = x3,

which may be written in short forms as

(1)′ = −(1), (2)′ = (2), (3)′ = (3).

Q2: reflection with respect to the plane perpendicular to axis x2:

(1)′ = (1), (2)′ = −(2), (3)′ = (3).

Q3: reflection with respect to the plane perpendicular to axis x3:

(1)′ = (1), (2)′ = (2), (3)′ = −(3).

Q4: reflection with respect to the plane passing through axis x1 and the bisector
of axes x2 and x3:

(1)′ = (1), (2)′ = (3), (3)′ = (2).

Q5: elementary rotation (by a very small angle α) around axis x1:

(1)′ = (1), (2)′ = (2) + α(3), (3)′ = (3) − α(2).

Transformations Q2, Q3, Q4 and Q5 leave the direction of e unchanged, whereas Q1

reverses it. (We note that for colesteric materials only Q4 is allowed for calculations
instead of reflections; rotations by 180◦ should be used.)

For a deeper understanding of the application of our method, we show as an
example how the components (123) and (233) of a third-order tensor transform.
Obviously:

Q1: (123)’=−(123), (233)’= (233),

Q2: (123)’=−(123), (233)’=−(233),
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Q3: (123)’=−(123), (233)’= (233),

Q4: (123)’= (132), (233)’= (322),

Q5: (123)’=(1)[(2)+α(3)][(3)−α(2)] =(123)+α[(133)−(122)],

(233)’=(233)+α [(333)−(223)−(232)].

Let us first examine the effect of transformation Q2. Since Q2 multiplies every
subscript 2 by −1, the non-disappearing tensor components may have only an
even number of subscript 2. In the case of transformation Q3, the same is true
for subscript 3; i.e., invariance with respect to transformations Q2 and Q3 means
those components of tensor R are zero that have an odd number of subscripts 2
or 3. Transformation Q4 changes subscripts 2 to 3 and vice versa; this means that
those tensor components obtained from one another so that their subscripts 2-s are
interchanged with 3-s and vice versa are identical.

From this, tensor R11 can readily be given. Since the subscripts of non-zero
components are

(11), (22) = (33),

we may write term e̊R11e̊ in equation (8.268) in the following form:

e̊R11e̊ = R11
11̊e1̊e1 + R11

22(̊e2̊e2 + e̊3̊e3).

However, as e̊e = 0, i.e. e̊1 is zero, we have

e̊R11e̊ = R11e̊2, (8.269)

where the subscripts of R11
22 are omitted.

Let us now analyze third-order tensors R12 and R13 whose non-zero components
are:

(111), (122) = (133), (212) = (313), (221) = (331).

Transformation Q1 changes them into their −1-fold, since there are an odd number
of 1-s in all of them. Consequently, R12 = 0, and R13 can also be determined.
Since in the form of expression e̊R13 : d̊ written in terms of components the first
subscript is that of e̊, we may write

e̊R13 : d̊ = R13
212(̊e2d̊12 + e̊3d̊13) + R13

221(̊e2d̊21 + e̊3d̊31) =

= R13
212ed̊̊e + R13

221̊ed̊e = R13ed̊̊e, (8.270)

in which we utilized that d̊ is symmetric.
Let us now proceed to the analysis of fourth-order tensors R22, R23 and R33.

Since the number of subscripts is now 4 and the numbers of both the 2-s and 3-s
are even (the number of 1-s is necessarily even), transformation Q1 leaves every
fourth order tensor invariant which are unchanged by Q2 and Q3. This also means
that R23 is zero, since it should be transformed by Q1 into its (-1)-fold. We have
to study R22 and R23. Now the subscript combinations of non-zero elements are
the following as calculated from Q1, Q2, Q3 and Q4:

(1111), (2121) = (3131), (2233) = (3322),

(1122) = (1133), (1221) = (1331), (2323) = (3232),

(1212) = (1313), (2211) = (3311), (2332) = (3223),

(2112) = (3113), (2222) = (3333),
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which means 11 different elements. However, we did not utilize Q5 so far.(We have
not needed it until now, since the formulae derived by the simpler transformations
and given in an invariant form are invariant also under Q5 .) Let us now calculate
the behavior of element (2223)=0.

(2223)′ = (2223) + α[(2222) − (2233) − (2323) − 3223)]

whence
(2222) = (2233) + (2323) + (2332)

results. Thus the number of independent elements is reduced to 10.
It would be quite a difficult task to write the equations with the subscript com-

binations obtained and then transform them into the invariant form; but this latter
can be determined also in the simpler way, as follows: A fourth-order tensor maps
a second order tensor to another second order tensor in a homogeneous, linear way.
The fourth order tensor of interest depends on e. Let us try to assign second-order
tensors homogeneous and linear in X to a second order tensor X and to e. These
are the following:

X, XT , e ◦ Xe, e ◦ XT e, Xe ◦ e, XT e ◦ e, tr Xδ,

trXe ◦ e, (eXe)δ, (eXe)e ◦ e.

There are just ten in number; thus, bilinear forms in X and Y are the following:

X : Y , XT : Y , eY Xe, eY XT e, eXT Y e, eXY e, trX trY ,

trXeY e, trY eXe, eXeeY e.

In the case of R22, X = Y = E; hence, expressions 3, 6 and 8, 9 are identical.
For R33, X = Y = d̊; thus the first and second expressions are identical, but also
expressions 3, 4, 5 and 6 are equal, whereas expressions 7, 8 and 9 are zero. Thus
we may write that

E̊ : R22 : E̊ = R22
1 E̊ : E̊ + R22

2 E̊ : E̊T + R22
3 eE̊2e + R22

4 (eE̊)2 + R22
5 (E̊e)2+

+ R22
6 (tr E̊)2 + R22

7 trE̊eE̊e + R22
8 (eE̊e)2, (8.271)

d̊ : R33 : d̊ = R33
1 d̊ : d̊ + R33

2 ed̊2e + R33
3 (ed̊e)2,

by means of which the dissipation function can be written as follows:

Φ =
1

2
R11e̊2 + R13e̊d̊e +

1

2
R22

1 E̊ : E̊ +
1

2
R22

2 E̊ : E̊T +
1

2
R22

3 eE̊2e+

+
1

2
R22

4 (eE̊)2 +
1

2
R22

5 (E̊e)2 +
1

2
R22

6 (trE̊)2 +
1

2
R22

7 (tr E̊)eE̊e+

+
1

2
R22

8 (eE̊e)2 +
1

2
R33

1 d̊ : d̊ +
1

2
R33

2 ed̊2e +
1

2
R33

3 (ed̊e)2.

(8.272)

The equations of motion for liquid crystals are obtained from the actual form of
Gyarmati’s local principle

L∗ = Tσs − Φ + µe̊e − (̊eE + eE̊)~λ (8.273)
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by seeking the maximum of its Lagrangian, where µ and ~λ are Lagrange multipliers.

The extremum problem means now that we search for values of e̊, E̊, d̊, µ and ~λ
for which L∗ is maximum when the values of E, B and e are given in accordance
with section 4.6. In calculations it must not be forgotten that d̊ is a symmetric
tensor of zero trace. Equations describing the motion are the following:

̺T
∂s

∂e
+ Div B + µe = E~λ + R11e̊ + R13d̊e,

̺T
∂s

∂E
+ B = e ◦ ~λ + R22

1 E̊ + R22
2 E̊T +

1

2
R22

3 (e ◦ E̊e + eE̊ ◦ e) + R22
4 e ◦ eE̊+

+ R22
5 E̊e ◦ e + R22

6 trE̊δ +
1

2
R22

7 (eE̊eδ + trE̊e ◦ e) + R22
8 (eE̊e)e ◦ e

(8.274)
tso + (ET B)so =

1

2
R13(̊e ◦ e + e ◦ e̊) + R33

1 d̊

+
1

2
R33

2

[

e ◦ d̊e + d̊e ◦ e − 2

3
(ed̊e)δ

]

+ R33
3 (ed̊e)

(

e ◦ e − 1

3
δ

)

,

e̊e = 0, eE = 0,

which include 13 kinetic coefficients of the resistance type. If we take also into
account the 4 Frank coefficients, it is apparent that 17 material constants are needed
for describing nematic liquid crystals.

Owing to the large number of material constants the equations of motion are
very complicated; efforts to eventually simplify the equations, even at the expense
of their range of validity, are understandable. One possible way of reduction is that
we restrict ourselves to cases in which the dimensions of the liquid crystal cell are
not too thin. In fact, when assuming large enough cells, E̊ is small as compared to
e̊; thus, in dissipation potential the terms quadratic in the components of E̊, which
correspond to approximation R22 = 0 can be neglected. In this approximation the
number of material constant reduces to 9; however, in this case the theory provides
correct results only for sufficiently thick samples.

It is very important to note that the thermodynamic theory presented becomes,
for approximation R22 = 0, identical with the Ericksen-Leslie-Parodi theory well-
known in the literature [40, 100, 131]. In order to illustrate the comparison, we
tabulated the notations used here and by the above authors.

Leslie here Leslie here Leslie here

d e G −e × m µ1 R33
3

σ tT N E̊ + Ed µ2
1
2 (R13 − R11)

~β ~λ A d̊ µ3
1
2 (R13 + R11)

N e̊ g −e × ̺m − Div B µ4 R33
1

Π BT λ1 −R11 µ5
1
2 (R33

2 − R13)

γ µ λ2 −R13 µ6
1
2 (R23

2 + R13)

w ė



210 VIII. APPLICATIONS OF THE THEORY

8.6.5. An example. We show now an example for the application of equations
(8.274). Consider a liquid crystal cell which is set between parallel planes. The
director at the boundary should be fixed parallel with the planes, in the same sense
on both sides. Take a Cartesian frame so that axis x1 should be perpendicular to
the boundary planes of the cell. At the boundary the direction of e should coincide
with that of axis x2.

Suppose that for some reason inside the cell, the director has turned around x1,
Let us examine the restoration of the equilibrium.

If we assume that the quantities describing the processes depend only on x1 and
time, they may be given in the form

e = cos αe2 + sin αe3, e̊ =
∂α

∂t
e1 × e,

E =
∂α

∂x
(e1 × e) ◦ e1, E̊ =

∂2α

∂x1∂t
(e1 × e) ◦ e1 −

∂α

∂x1

∂α

∂t
e ◦ e1.

(8.275)

From these expressions it is easy to see in our case E : ET = 0, Ee = 0 and
trE = 0; thus the expression of entropy given by equation (8.228) is simplified to

s = s0(u) − 1

2T̺
k22E : E = s0(u) − 1

2T̺
k22

(

∂α

∂x1

)2
(8.276)

Similarly, it is apparent that

E̊ : E̊T = 0, E̊e = 0,

eE̊ = − ∂α

∂x1

∂α

∂t
e1, tr E̊ = 0, (8.277)

and, hence, the actual expression for dissipation potential is

Φ =
1

2
R11e̊2 +

1

2
R22

1 E̊ : E̊ +
1

2
R22

4 (eE̊)2 =
1

2
R11

(

∂α

∂t

)2
+

+
1

2
R22

1

(

∂2α

∂t∂x1

)2
+

1

2
(R22

1 + R22
4 )

(

∂α

∂x1

)2 (

∂α

∂t

)2
.

(8.278)

If we also assume that the medium does not flow (d̊ = 0), by utilizing these formulae
our equations of motion become

Div B + µe = E~λ + R11e̊,

−k22E + B = e ◦ ~λ + R22
1 E̊ + R22

4 e ◦ (eE̊).
(8.279)

We did not write the third equation since we are only looking for the equation

determining α(x1, t). Now we determine ~λ by multiplying the second equation by
e from the left, and utilizing correlations eE = eB = 0 and equation (8.277):

~λ = (R22
1 + R22

4 )
∂α

∂x1

∂α

∂t
e1, (8.280)
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then also tensor B:

B =

(

k22
∂α

∂x1
+ R22

1

∂2α

∂x1∂t

)

(e1 × e) ◦ e1. (8.281)

On substituting these expressions into the first equation of (8.279), we arrive at

(

k22
∂2α

∂x2
1

+ R22
1

∂3α

∂t∂x2
1

)

e1 × e −
(

k22
∂α

∂x1
+ R22

1

∂2α

∂x1∂t

)

∂α

∂x1
e + µe =

= (R22
1 + R22

4 )

(

∂α

∂x1

)2
∂α

∂t
e1 × e + R11 ∂α

∂t
e1 × e, (8.282)

whence, by identifying the coefficients of e1 × e, equation

k22
∂2α

∂x2
1

+ R22
1

∂3α

∂t∂x2
1

= R11 ∂α

∂t
+ (R22

1 + R22
4 )

(

∂α

∂x1

)2
∂α

∂t
(8.283)

is obtained.
Moreover, we deal with the solution of equation (8.283) only for small α-s. In

this case, the last term on the right side being of third degree may be neglected
and a solution is sought in the form

α =
∑

n

A exp

(

− t

τn

)

sin
nπ

d
x1 (8.284)

where d is the thickness of the cell. The solution is obtained in the form of a Fourier
series. The relaxation times for individual terms are determined from equation
(8.283):

τn =
R22

1

k22
+

R11

k22

d2

n2π2
. (8.285)

From this equation it is seen that the relaxation times of establishing equilibrium
are quadratic functions of the thickness and on decreasing this thickness beyond all
limits they approach a finite, non-zero limiting value. Since R22 is zero in Leslie’s
theory, it leads to a relaxation time proportional to the square of cell thickness [54].

Let us finally show that the direct application of Gyarmati’s variation principle
simplifies significantly the solution of this task. Since only dissipation potential Φ
has been calculated, it is expedient to use the space-integrated partial form of the
variational principle, the so-called current representation

δJ

d
∫

0

Tσs − Φ dx1 = 0. (8.286)

This partial form is written in energy representation and may also be written in an
alternative form by utilizing entropy balance

δJ

d
∫

0

̺T ṡ − Φ dx1 = 0 (8.287)
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whose Lagrange function L = ̺T ṡ − Φ can be obtained directly from equations
(8.276) and (8.278):

̺T ṡ − Φ = −k22

(

∂α

∂x1

)(

∂2α

∂x∂t

)

− 1

2
R11

(

∂α

∂t

)2
+

1

2
R22

1

(

∂2α

∂x1∂t

)2
+

+
1

2
(R22

1 + R22
4 )

(

∂α

∂x1

)2 (

∂α

∂t

)2
. (8.288)

The Euler-Lagrange equation of variation problem (8.287) is obtained so that ∂α
∂t

characteristic for the rate of the process is regarded as an unknown function de-
pending on place. It is easy to see that the equation obtained is identical with
equation (8.283).

8.6.6. Shear flow of nematic liquid crystals. The medium studied is sit-
uated also in the present case between planes x1 = 0 and x1 = d. The director is
assumed to be perpendicular to axis x3. Flow rate is defined by

v = v(x1)e2. (8.289)

If we suppose that the quantities describing the processes depend only on x1 and
time, they may be given in the following form:

e = cos αe1 + sin αe2, d̊ =
1

2

∂v

∂x1
(e2 ◦ e1 + e1 ◦ e2),

ω =
1

2

∂v

∂x1
(e2 ◦ e1 − e1 ◦ e2), e̊ =

(

∂α

∂t
− 1

2

∂v

∂x1

)

e3 × e,

E =
∂α

∂x1
(e3 × e) ◦ e1,

(8.290)

E̊ =
∂2α

∂x1∂t
(e3 × e) ◦ e1 +

1

2

∂α

∂x1

∂v

∂x1
(e3 × e) ◦ e2−

− ∂α

∂x1

(

∂α

∂t
− 1

2

∂v

∂x1

)

e ◦ e1.

We can check by a simple calculation that conditions e̊e = 0 and e̊E + eE̊ = 0 are
fulfilled.

In what follows, for simplicity, we restrict ourselves to Leslie’s theory, i.e. we
assume that R22 = 0. The forms of entropy and dissipation potential are calculated
by using equations (8.290):

s = s0 −
1

2̺T

(

∂α

∂x1

)2
(k11 sin2 α + k33 cos2 α) (8.291)

and

Φ =
1

2
R11

(

∂α

∂t

)2
+

1

2

(

R13 cos 2α − R11
) ∂α

∂t

∂v

∂x1
+

+
1

8

(

∂v

∂x1

)2
(R11 + 2R33

1 + R33
2 + 4R33

3 sin2α cos2 α − 2R13 cos 2α).
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Equations of motion are obtained in the simplest way by utilizing Gyarmati’s vari-
ational principle in its form given by equation (8.287). If function

f(α) = k11 sin2 α + k33 cos2 α (8.292)

is introduced for simplifying notations, then the Lagrange function of the variational
problem is described by

L = ̺T ṡ − Φ = − ∂α

∂x1

∂2α

∂x1∂t
f(α) − 1

2

∂α

∂t

(

∂α

∂x1

)2
df

dα
− Φ (8.293)

The unknown functions with respect to which variation has to be carried out (rates

of processes) are v(x1) and ∂α(x1)
∂t , whereas α(x1) is fixed.

The Euler-Lagrange equations belonging to the variational problem can be writ-
ten directly as

1

2

(

∂α

∂x1

)2
df

dα
+ R11

∂α

∂t
+ h(α)

∂v

∂x1
=

∂

∂x1

(

∂α

∂x1
f(α)

)

,

∂

∂x1

(

h(α)
∂α

∂t
+

∂v

∂x1
g(α)

)

= 0,

(8.294)

where notations

g(α) =
1

4
[R11 + 2R33

1 + R33
2 + 4R33

3 sin2 α cos2 α − 2R13 cos 2α]

h(α) =
1

2
(R13 cos 2α − R11)

(8.295)

have been introduced.
It is obvious that in a stationary state the equations take the simpler forms

dv

dx1
g(α) = C,

2f(α) =
d2α

dx2
1

+
df

dα

(

dα

dx1

)2

− 2h(α)C

g(α)
= 0

(8.296)

which are identical with those derived by Leslie from a non-thermodynamic theory
[100].

About the practical application of equations (8.296), it should be noted they are
quite difficult to solve accurately, especially if we consider that different boundary
conditions may exist. In the simplest case, when the director is perpendicular to
the surface at the boundaries, boundary conditions may be given as

α(0) = α(d) = 0, v(0) = 0, v(d) = v0 (8.297)

We cannot deal here with the different methods for solving these equations, but we
mention that for a given problem, especially if we are satisfied with approximate
solutions, we may start from the actual form of Gyarmati’s variational principle
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in both the stationary (equation (8.296)) and the general case corresponding to
equation (8.294); by applying some direct methods of variational calculus (Ritz
method, etc.), we can arrive at good approximate solutions very quickly [145-147].

Before finishing the study of liquid crystals, we shall calculate the general form
of stress tensor for the case of approximation corresponding to the Ericksen-Leslie-
Parodi theory when R22 = 0 substitution is applied in equation (8.274). The
equations provide the symmetric part of the stress tensor in an explicit form. The
antisymmetric part can be determined by utilizing the balance of moment of mo-
mentum described by equation (4.66) in the form

2w(t) + Div(e × B) + ̺m = 0 (8.298)

From the scalar nature of entropy and the second equation of (8.274) and by also
utilizing correlation eE = 0, we obtain

−̺m + e × ̺T
∂s

∂e
+ 2w(ET B − BET ) = e × E~λ. (8.299)

Let us now also utilize the first equation of (8.274) whose vectorial multiplication
from the left by e leads to

e × ̺T
∂s

∂e
+ e × Div B = e × E~λ + e × ∂Φ

∂̊e
. (8.300)

If equality
Div(e × B) = 2w(BET ) + e × Div B (8.301)

is added to the above relationships, then the latter four equations give

2w(t + ET B) = −e × ∂Φ

∂̊e
= −e × (R11e̊ + R13d̊e). (8.302)

From this correlation and the third equation of (8.274), the traceless part of t can
already be determined:

t = −ET B − pδ +
∂Φ

∂d̊
+

1

2

[

e ◦ ∂Φ

∂̊e
− ∂Φ

∂̊e
◦ e

]

. (8.303)

Here p is an undefined scalar quantity. It can be obtained only by the solution of
Cauchy’s equation of motion. Due to its relatively simple form, expression (8.303)
can be used in numerous important cases.



APPENDIX.

(Mathematical notations and definitions.)

The reader is supposed to be familiar with the elements of the vector and tensor
calculus, nevertheless, a concise recapitulation makes the book easier to read. Our
aim is to give a report on the nomenclature and notation used throughout.

A 1. The Basic Operations. A scalar is written with italics:
a scalar (tensor of zero order).
a vector with bold:
v vector, the components are vi (i=1, 2, 3)
(tensor of first order).

while the tensors of second or higher order are printed with slanted bold as for
example in

d second order tensor
with components dik (i,k=1, 2, 3)

The operations are given here both in invariant form and with indices joined by
the sign ←→ referring equivalence. Here, as throughout the book, we use Ein-
stein’s summation convention if an index in a formula appears twice, it means that
summation is carried out over all possible values; i.e. the sign of summation

∑

is
omitted. Neither do we list the possible values of the other indices, as they are
always 1, 2 or 3 in a Cartesian frame. The Greek letter δ stands for the unit tensor,
which has the components δik, for which

δik =

{

1 if i = k

0 if i 6= k.

Two tensors are equal

A = B if Aik = Bik.

Analogous relations are valid for higher-order tensors.
The sum (difference) of two tensors is defined in components

C = A±B ←→ Cik = Aik ±Bik.

Similarly, B equals A multiplied by a scalar a if

B = aA←→ Bik = aAik.
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A 2. Symmetric and Antisymmetric Tensors. One obtains the transposed
tensor AT when transposing its indices:

AT
ik = Aki.

A tensor is called symmetric if

A = A
T ←→ Aik = Aki

and antisymmetric if
A = −AT ←→ Aik = −Aki

Any tensor can be split up into a symmetric

A
s =

1

2
(A+A

T )←→ As
ik =

1

2
(Aik +Aki)

and an antisymmetric (skew-symmetric)

A
a =

1

2
(A−A

T )←→ Aa
ik =

1

2
(Aik −Aki)

part, i.e.
A = A

s +A
a.

Sometimes the alternating epsilon gives convenience;

ε←→ εijk.

It has the components
ε123 = ε231 = ε312 = 1

ε321 = ε213 = ε132 = −1

while all the others equal zero.

A 3. Tensor products. The exterior product of two tensors of order m and
n is a tensor of order m+ n. In the case of two vectors, the product

c = a ◦ b←→ cik = aibk

is called a dyad.
The vector product of two polar vectors defines an axial vector

c = a× b←→ ci = εijkajbk.

An axial vector can be obtained from any antisymmetric tensor

c = w(A)←→ ci =
1

2
εijkAkj .
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The interior product of two tensors is often called a scalar product. It is obtained
from the external product by putting two indices equal and summing over the
resulting “dummy” index. We indicate the interior product with a dot (·) inserted
between the symbols of the tensors, which can be omitted without the danger of
misunderstanding. The most frequent products are

a · b = ab←→ aibi

v · T = vT ←→ (vT )i = vkTki

T · v = Tv←→ (Tv)i = Tikvk

The second-order tensor defined by

A ·B = AB ←→ (AB)ik = AijBjk

is called simply the product of the tensors A and B.
The scalar product of two second-order tensors can also be defined, which is

indicated by colon

A : B = B : A←→ (A : B) = AikBik.

The trace of the tensor A is the scalar product

trA = A : δ ←→ trA = Aikδik = Akk.

The following identities hold

a× b = ε : (a ◦ b)←→ (a× b)i = εijkajbk

c(a× b) = aε : (a ◦ b)←→ c(a× b) = εijkciajbk

a× (b× c) = b(ac)− c(ab)

εijkεklm = δilδjm − δimδjl.

A 4. Eigenvalues and Invariants. The eigenvalues and eigenvectors are
rather important in the theory of second-order tensors. A number λ is called an
eigenvalue and a non-zero vector is said to be an eigenvector of the tensor A if they
are connected by the equation

ae = λe←→ Aikek = λei = λδikek.

The scalar numbers defined as

I1 = εijk(A1iδ2jδ3k + δ1iA2jδ3k + δ1iδ2jA3k) =

= εi23A1i + ε1i3A2i + ε12iA3i = A11 +A22 +A33 = trA,

I2 = εijk(A1iA2jδ3k +A1iδ2jA3k + δ1iA2jA3k) =

= εij3A1iA2j + εi2jA1iA3j + ε1ijA2iA3j =
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= A11A22 −A12A21 +A11A33 −A14A31 +A22A33 −A23A32

and

I3 = εijkA1iA2jA3k = detA

are called the first (I1), the second (I2) and the third (I3) scalar invariants of the
tensor A, respectively.

Any symmetric second-order tensor can be given in the form

A = λ1e1 ◦ e1 + λ2e2 ◦ e2 + λ3e3 ◦ e3,

where λ1, λ2 and λ3 are real numbers, while e1, e2 and e3 are mutually orthogonal
unit vectors.

The eigenvalues and the scalar invariants are related by

I1 = λ1 + λ2 + λ3; I2 = λ1λ2 + λ2λ3 + λ3λ1; I3 = λ1λ2λ3

The scalar invariants can be expressed by interior products

I1 = trA = δ : A,

I2 =
1

2
(trA)2 −

1

2
tr(A2),

I3 =
1

3
tr(A3)−

1

2
tr(A2) trA+

1

6
(trA)3.

In the case of antisymmetric tensors, the vector invariant is often useful

w(A) = −
1

2
ε : A←→ wi(A) =

1

2
εijkAkj ,

From here the identity

A = w(A)× δ ←→ Aik = εijlwj(A)δkl = εijkwj(A)

follows.

A 5. Orthogonal Tensors. A special kind of second-order tensors are the
orthogonal ones, for which the relation

(Ra)(Rb) = a · b←→ RijRikajbk = aibi

holds. From here, the equivalent relation

R
T
R = δ ←→ RijRik = δjk

follows. A second-order tensor R is orthogonal if and only if the above identity
holds. An eigenvalue of an orthogonal tensor equals 1 or −1.
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For any orthogonal tensor R, there exists a frame the basis vector e1 of which
is an eigenvector of the tensor R. In this case we get

Re1 = ±e1

Re2 = cosαe2 + sinαe3

Re3 = ± sinαe2 ∓ cosαe3

An orthogonal tensor describes a rotation if its determinant is +1 and a rotation
combined with a reflection the plain of which is perpendicular to the axis of the
former if the determinant is −1.

The set of the orthogonal tensors is a group, as any one has an inverse, the unit
tensor is also orthogonal; moreover, the product of two orthogonal tensors is also
orthogonal.

The set of tensors with determinant +1 or −1 is also a group, which is called
the unimodular group. The orthogonal group is a maximal subgroup in the uni-
modular group. In continuum mechanics, Cauchy’s polar decomposition theorem
is important. It says that any tensor of second-order is the product of a symmetric
and an orthogonal tensor

A = SR = RS
′ ←→ Aij = SikRkj = RikS

′

kj

where
S = S

T , R
T
R = δ and S

′ = R
T
SR

If the eigenvalues of S and S’ are declared positive, Cauchy’s decomposition is
unique.

A 6. Isotropic Tensors. The so-called isotropic tensors, the components of
which are invariant under the change of frame, play an important role in the de-
scription of the material properties of isotropic bodies. It is obvious that the only
isotropic vector is the zero vector. The isotropic tensors of second-order are propor-
tional to the unit tensor; and those of third-order, to the alternating epsilon. The
higher-order isotropic tensors are external products of some power of the second-
order unit tensor and of the alternating epsilon. Keeping the identity

εijkεlmn =

∣

∣

∣

∣

∣

∣

δil δim δin
δjl δjm δjn
δkl δkm δkn

∣

∣

∣

∣

∣

∣

in mind, we see that the alternating epsilon is on the first power or does not enter
the formula at all. For further details, we refer to the work of Smith and Rivlin
[134]. For illustration, let the form of the fourth and the fifth order isotropic tensors
stand here:

I
(4)
ijkl = a1δijδkl + a2δikδjl + a3δilδjk

I
(5)
ijklm = a1εijkδlm + a2εijlδkm + a3εiklδjm + a4εjklδim+

a5εijmδkl + a6εikmδjl + a7εjkmδil + a8εilmδjk+

a9εjlmδik + a10εklmδij

Finally, we mention that the sign of the isotropic tensors of an even order remain
unchanged under reflection while that of odd order changes.
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A 7. Derivatives. Here we list the most important spatial derivatives using
the so-called nabla operator.

∇ =
∂

∂r
←→ ∇i =

∂

∂xi

The gradient of a scalar:

∇a = grad a←→ (∇a)i =
∂a

∂xi

= a,i

The gradient of a vector:

v ◦ ∇ = Gradv←→ (v ◦ ∇)ij =
∂vi

∂xj

= vi,j

The divergence of a vector

∇v = div v←→ ∇v =
∂vi

∂xi

= vi,i

The rotation of a vector

∇× v = rotv←→ (∇× v)i = εijk
∂vk

∂xj

= εijkvk,j

The divergence of a tensor

T · ∇ = DivT ←→ (T∇)i =
∂Tij

∂xj

= Tij,j

The Laplacian

∇ · ∇ = ∆←→
3

∑

i=1

∂2

∂x2
i

A 8. Integral Theorems.. The Gauss theorem for vectors
∫

div v dV =

∮

v dA←→

∫

Vi,i dV =

∮

vi dAi

The Gauss theorem for higher-order tensors
∫

T∇ dV =

∮

T dA←→

∫

Ti...l,l dV =

∮

Ti...l dAl,

The Stokes theorem
∫

∇× T dA =

∮

T dr←→

∫

εijkT...k,j dAi =

∮

T...i dxi

Green’s formulae
∮

a · grad b dA =

∫

(a∆b+ grad a · grad b) dV

and
∮

(a · grad b− b · grad a) dA =

∫

(a∆b− b∆a) dV

We stress once more that the only aim of this appendix is to declare the nomen-
clature and the notation used. It is completely unsuitable to learn the essentials of
vector and tensor calculus from it.
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[118] Müser, H. E., Petterson, J., Forschritte der Physik 19 (1971), 559..612.

[119] Nettleton, R. E., Physica 30 (1964), 1989..2002; Ann. d. Phys. 2 (1993), 490..499; J. Chem.
Phys. 99, 3059..3066.

[120] Noll, W., Arch. Rat. Mech. Anal. 18 (1965), 100..102.

[121] Noll, W., The Foundations of Mechanics and Thermodynamics. (Selected Papers), Springer,

Berlin, 1974.
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