
Applied Energy 88 (2011) 4867–4873
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy
ANN-GA based optimization of a high ash coal-fired supercritical power plant

M.V.J.J. Suresh, K.S. Reddy ⇑, Ajit Kumar Kolar
Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 February 2011
Received in revised form 12 June 2011
Accepted 18 June 2011
Available online 20 July 2011

Keywords:
Artificial neural network
Genetic algorithm
Supercritical power plant
High ash coal
Energy
Exergy
0306-2619/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.apenergy.2011.06.029

⇑ Corresponding author. Tel.: +91 44 2257 4702; fa
E-mail address: ksreddy@iitm.ac.in (K.S. Reddy).
The efficiency of coal-fired power plant depends on various operating parameters such as main steam/
reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel.
However, simultaneous optimization of all these operating parameters to achieve the maximum plant effi-
ciency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimi-
zation of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the
maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program,
‘‘Cycle-Tempo’’ is used to train the artificial neural network (ANN) to predict the energy input through fuel
(coal). The optimum set of various operating parameters that result in the minimum energy input to the
power plant is then determined by coupling the trained ANN model as a fitness function with the genetic
algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out
the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters,
the developed model can also be used for on-line optimization when quick response is required. Further-
more, the effect of various coals on the thermodynamic performance of the optimized power plant is also
determined.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction temperatures, turbine extraction pressures, and excess air ratio
Electricity drives the economic growth of a developing country
like India, which is witnessing a robust economic growth rate of 8%
and above. India has huge coal reserves – about 7.1% of the world’s
total [1] and thus, coal-fired power plants contribute to about 70%
of the total power generation [2]. Currently all the coal-fired power
plants in India operate on subcritical (SubC) steam parameters
with the exception of two recent plants that use supercritical
(SupC) steam parameters. Most of the coal-fired power plants that
use indigenous high ash (HA) (�45%) coal have plant efficiencies
(net) less than 35% (based on HHV of coal). Rapid depletion of fossil
fuel resources and consequent increase in CO2 emissions necessi-
tate installation and operation of more efficient power plants.
The first coal-fired SupC power plant recently commissioned by
National Thermal Power Corporation (NTPC) in India has a gross
power output of 660 MWe with steam parameters of 242.2 bar/
537 �C/565 �C [3]. However, the steam parameters adopted for
the new SupC units in India are on the lower range of SupC condi-
tions compared to the state-of-the-art power plants elsewhere.
Hence, there is an ample scope to optimize the operating parame-
ters of the SupC power plants further to improve the plant efficien-
cies significantly.

The efficiency of a power plant depends on various operating
parameters such as main steam/reheat steam pressures and
ll rights reserved.
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for a given fuel. But simultaneous optimization of these operating
parameters to achieve the maximum plant efficiency is a challeng-
ing task. The use of Artificial Intelligence (AI)-based tools like arti-
ficial neural networks (ANN) and genetic algorithms (GA) have
been found very promising to solve a variety of such complex/ill-
defined problems [4–8]. ANN is widely applied in design, optimiza-
tion, classification, forecasting, and control systems. De et al. [9]
developed an ANN model for the steam process of a coal biomass
co-fired combined heat and power plant to quickly predict the per-
formance with good accuracy. Reddy and Ranjan [10] used ANN to
estimate solar resource in India. The performance parameters of a
solar-driven ejector-absorption cycle were modeled as functions of
only the working temperature using ANN by Sözen and Akçayol
[11]. GA is a stochastic global search method that simulates the
natural biological evolution. It searches from a population of solu-
tions rather than from a single point and thus prevents the conver-
gence to suboptimal solutions. Sacco et al. [4] applied GA to
optimize turbine extraction in a secondary side of pressurized-
water reactor. Mohagheghi and Shayegan [12] applied GA to calcu-
late the optimal thermodynamic performance conditions for heat
recovery steam generators. The optimization of thermodynamic
parameters of the supercritical CO2 power cycle was reported by
Wang et al. [8] using ANN and GA. Kalogirou [13] optimized a so-
lar-energy system to maximize its economic benefits using ANN
and GA.

This study presents a coupled neuro-genetic optimization
methodology involving ANN and GA to determine the maximum
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Table 3
Assumed ranges of the operating parameters to be optimized.

Parameter Range

Excess air Up to 25%
IP turbine (RH) steam pressure 15–25% of the HP turbine (main) steam

pressure
IP turbine (RH) steam

temperature
580–620 �C

LP turbine steam pressure 3–5 bar
De-aerator pressure 9–12 bar
LP FWH1 0.103–0.42 bar
LP FWH2 0.42–1.19 bar
LP FWH4 3–6.1 bar
HP FWH1 11–30.35 bar
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possible plant efficiency of a high ash coal-fired SupC power plant
in Indian climatic condition where the design ambient tempera-
ture is considered as 33 �C. A unit size of 800 MWe currently under
development in India is considered for the neuro-genetic optimiza-
tion. Furthermore, the effect of various coals on the thermody-
namic performance of the optimized plant is also determined
based on energy and exergy analysis. It is to be noted that the
majority of the causes of irreversibilities like heat transfer through
a finite temperature difference, chemical reactions, friction, and
mixing are accounted by only exergy analysis [14].

2. Methodology

Power plant is a complex system that involves various intercon-
nected circuits each of which consists of different components.
Hence, a flow-sheeting computer program, ‘Cycle-Tempo’ is used
to perform a component-wise modeling followed by a system
Table 2
Characteristics of Indian coals.

Reference high ash (HA) Sample-1 Samp

As-received
(wt.%)

Dry
(wt.%)

As-received
(wt.%)

Dry
(wt.%)

As-re
(wt.%

Proximate analysis
Fixed carbon 24.00 27.27 30.00 31.71 32.80
Volatile matter 21.00 23.86 23.90 25.27 27.30
Ash 43.00 48.87 40.70 43.02 31.70
Moisture 12.00 – 5.40 – 8.20

Ultimate analysis
Carbon 34.46 39.16 40.40 42.71 46.30
Hydrogen 2.43 2.76 2.60 2.75 2.70
Oxygen (by

difference)
6.97 7.92 9.50 10.04 9.70

Nitrogen 0.69 0.78 1.00 1.06 1.00
Sulfur 0.45 0.51 0.40 0.42 0.40
Ash 43.00 48.87 40.70 43.02 31.70
Moisture 12.00 – 5.40 – 8.20
HHV (MJ/kg) 13.96 15.83 15.79 16.64 17.90
Exergy (MJ/kg) 15.26 17.30 17.14 18.08 19.11

Table 1
Major assumptions for the SupC power plant simulation.

Ambient pressure of the reference environment (bar) 1.013
Ambient temperature of the reference environment (�C) 33
Relative humidity of the ambient air (%) 60
Chemical composition of the reference-environment model: (mole

fraction)
N2 0.7562
O2 0.2030
H2O 0.0312
CO2 0.0003
Others 0.0093
Ash composition: (by weight)
SiO2 70
Al2O3 30
Bottom to fly ash ratio 20:80
Excess air (%) 20
Condenser pressure (kPa) 10.3
Temperature gain of the condenser cooling water (�C) 10
Final feedwater temperature (�C) 305
Terminal temperature difference (TTD): (�C)
Low pressure (LP) closed feedwater heaters (FWHs) 3
High pressure (HP) closed FWHs 0
Drain cooler approach (DCA) temperature of closed FWHs (�C) 5
Isentropic efficiencies: (%)
High pressure (HP) turbine 90
Intermediate pressure (IP) turbine 92
Low pressure (LP) turbine 90
Turbine driven boiler feed pump (BFP) 80
Fans 80
Pumps 85
Generator efficiency (%) 98.7
simulation. ‘Cycle-Tempo’ is a well-structured package for the
steady state thermodynamic modeling and analysis of systems
for the production of electricity, heat and refrigeration [15]. The
power plant simulation data obtained from ‘Cycle-Tempo’ is used
to train the ANN to predict the energy input through fuel (coal).
The optimum set of various operating parameters that result in
the minimum energy input to the power plant is then determined
by using the trained ANN model as a fitness function with the GA.
The maximum plant efficiency is then finally obtained from the
power plant simulation in ‘Cycle-Tempo’ using the set of optimum
parameters. The neuro-genetic optimization of the entire plant is
carried out in two stages. In the first stage, optimal excess air ratio,
intermediate pressure turbine (IP) steam parameters (reheat pres-
sure and temperature), and low pressure (LP) turbine inlet steam
pressure are calculated assuming high pressure (HP) turbine steam
parameters (main steam temperature and pressure). Once the HP,
IP, and LP turbine steam parameters are determined, then the tur-
bine extraction steam pressures are calculated for the individual
feedwater heaters as a part of the second stage.
3. Power plant simulation

The configuration of the first 660 MWe SupC power plant com-
missioned by NTPC in India is considered for optimizing the vari-
ous operating parameters [3]. Also, the simulations were carried
out for higher capacity of 800 MWe for the same plant configura-
tion which is currently under development in India. The process
flow diagram of the power plant is prepared in ‘Cycle-Tempo’
and the required operating parameters (such as pressures, temper-
atures, and efficiencies) for individual components are specified.
le-2 Sample-3 Sample-4

ceived
)

Dry
(wt.%)

As-received
(wt.%)

Dry
(wt.%)

As-received
(wt.%)

Dry
(wt.%)

35.73 42.80 47.40 48.30 49.19
29.74 26.40 29.24 34.10 34.73
34.53 21.10 23.36 15.80 16.08
– 9.70 – 1.80 –

50.44 54.60 60.47 66.50 67.72
2.94 3.00 3.32 4.10 4.18
10.56 10.00 11.07 9.70 9.88

1.09 1.20 1.33 1.70 1.73
0.44 0.40 0.44 0.40 0.41
34.53 21.10 23.37 15.80 16.08
– 9.70 – 1.80 –
19.44 21.10 23.30 26.78 27.20
20.77 22.14 24.45 27.64 28.08
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The major assumptions used for the simulation of power plant are
listed in Table 1. The HP turbine (main) steam pressure and tem-
perature are considered as 290 bar and 600 �C, respectively that
correspond to the state-of-the-art power plants. Furthermore,
pressure drop in the pipes is neglected whereas the same in steam
generator is assumed equal to that in the reference single reheat
SupC power plant [16]. The constraint of DCA temperature does
not apply to the low pressure feedwater heater (LP FWH) immedi-
ately located after the condenser as the condensate is assumed to
be in saturated state at the condenser exit. An auxiliary power con-
Fig. 1. Schematic representation of the 8

Fig. 2. Schematic of the
sumption of 7.5% is assumed for the optimized SupC power plant
and the power consumption by miscellaneous balance of plant
(such as plant control systems, lighting, and heating, ventilating,
and air conditioning (HVAC)), steam turbine auxiliaries and trans-
former losses is considered as 5 MWe (included in the auxiliary
power consumption) [17]. The characteristics of the reference HA
Indian coal along with other coals from various coal mines in India
that are used for the simulation are presented in Table 2 [3,18].

The performance of the studied coal-fired power plant is evalu-
ated in terms of plant energy and exergy efficiencies as follows:
00 MWe supercritical power plant.

ANN architecture.
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Plant energy efficiency;

g ¼ Net electricity output
Mass flow rate of coal�HHVðdry basisÞ of the coal

ð1Þ
Plant exergy efficiency;

e ¼ Net electricity output
Mass flow rate of coal� Specific exergy of the coal

ð2Þ

In India, as a normal practice, power plant industry quotes the
power plant efficiencies on the basis of higher heating value
(HHV) of fuel. Hence, to reflect the typical values of power plant
efficiencies in India, HHV (dry basis) has been used throughout
the study instead of LHV.
4. Neuro-genetic optimization

A prior knowledge of the typical range of operating parameters
is required or the same needs to be identified prior to the use of
neuro-genetic optimization methodology. In the present study,
the ranges of operating parameters determined by the authors in
their earlier work [16] have been used for neuro-genetic optimiza-
Fig. 3. Neuro-genetic optimization methodology adopted for the studied plant.

Fig. 4. Regression fit based on the ANN model of power plant except FWHs.
tion. The optimized parameters of the studied power plant config-
uration are determined in two stages using neuro-genetic
approach. In the first stage, optimized values of operating parame-
ters such as excess air ratio, IP turbine (reheat steam) pressure/
temperature, and LP turbine pressure are determined assuming
the typical ranges as shown in Table 3 [16] whereas in the second
stage, the optimized extraction pressures of turbine bleed streams
to feedwater heaters (FWHs) are determined.

Fig. 1 shows the schematic of the SupC power plant configura-
tion and the typical ANN architecture considered for the present
study is shown in Fig. 2. The neuro-genetic optimization approach
shown in Fig. 3 is applied using MATLAB’s Neural Network and Ge-
netic Algorithm toolbox [19]. The neural network is trained using
Levenberg–Marquardt backpropagation algorithm with four and
six hidden neurons for plant without and with FWHs, respectively
whereas the population size in genetic algorithm is considered to
be 20 with an elite count and crossover fraction as 2 and 0.8,
respectively. The comparison of data fit obtained between Cycle-
Tempo simulations of power plant cycle without FWHs and ANN
model is shown in Fig. 4. It is observed that the ANN model is in
very good agreement with the Cycle-Tempo simulations and hence
GA is applied over the ANN model to determine the optimum set of
Fig. 5. Convergence curve of optimization of power plant parameters except FWHs.

Fig. 6. Regression fit based on the ANN model of power plant including FWHs.



Fig. 7. Convergence curve of optimization of power plant parameters including
FWHs.

M.V.J.J. Suresh et al. / Applied Energy 88 (2011) 4867–4873 4871
operating variables. The objective function is to minimize the en-
ergy input to the power plant without the feedwater heaters
(FWHs) and subject to the constraints considered in Table 3. The
corresponding convergence of the GA is shown in Fig. 5. Once the
optimized turbine parameters are identified, the neuro-genetic
optimization approach is repeated for the entire plant including
the FWHs. In order to identify the optimized extraction pressures
for FWHs, an equal temperature distribution is assumed for indi-
vidual FWHs (wherever applicable) after determining the de-aera-
tor pressure. The corresponding data fit and GA convergence
curves for the total plant including FWHs are shown in Figs. 6
and 7, respectively. Furthermore, the comparison of results
Table 4
Stream data of the optimized SupC power plant.

Stream No. (as indicated in Fig. 1) Pressure (bar) Temperature (�C) M

Coal/bottom ash
1 1.030 33.0 11
9 1.013 1050.0 11

Air/flue gas
2 1.013 33.0 68
3 1.040 35.9 68
4 1.030 273.9 68
5 1.010 1784.9 79
6 1.000 320.0 79
7 1.000 122.7 79
8 1.060 130.0 79

Water/steam
10 290.0 600.0 63
11 62.0 620.0 52
12 3.0 209.5 19
13 3.0 209.5 19
14 92.2 409.8 44
15 62.0 353.9 52
16 62.0 353.9 68
17 25.6 480.3 29
18 11.0 362.3 20
19 11.0 362.3 45
20 6.1 288.8 21
21 3.0 209.5 25
22 1.1 114.2 23
23 0.3 69.1 17
24 0.103 46.4 33
25 0.103 46.4 47
26 11.0 46.5 47
27 360.0 191.2 63
28 360.0 305.0 63
29 342.5 340.0 63
30 1.013 33.0 20
31 2.030 33.0 20
32 1.030 43.0 20
obtained with the coupled neuro-genetic optimization and the ‘Cy-
cle-Tempo’ simulation is also carried out to determine the accuracy
of the adopted methodology. The variation in the output of the
objective function, i.e. the minimum energy input to the power
plant using reference HA Indian coal was less than 1%. The stream
data of the optimized power plant configuration is shown in
Table 4.

The comparison of results of neuro-genetic optimization and
the parametric optimization reported by the authors in their ear-
lier work [16] is shown in Table 5. It is observed that neuro-genetic
optimization results in almost the same plant energy and exergy
efficiencies. Moreover, the variations in optimized operating
parameters obtained using both the methods are very minimal.
The neuro-genetic optimization methodology results in the signif-
icant reduction of computation effort compared to the parametric
optimization wherein a number of cases are required to be simu-
lated corresponding to the variations in individual operating
parameters. The major advantage of the neuro-genetic algorithm
is the possibility of on-line optimization when quick response is re-
quired. However, the physical model of the power plant needs to
be built prior to the on-line optimization.
5. Effect of various coals on the thermodynamic performance of
the optimized plant

The power plant efficiency gets affected considerably by the
variation in fuel composition and it is difficult to account the loss
that involves unburnts without using any assumptions that in turn
may lead to uncertainties. It is to be noted that the energy loss in
the steam generator due to the combustibles in ash, radiation
and convection losses, and unaccounted losses is considered as
ass flow rate (kg/s) Energy flow rate (MWth) Exergy flow rate (MWth)

8.2 1870.8 2044.4
.6 15.4 9.2

7.0 31.2 0
7.0 33.2 1.6
7.0 202.6 46.2
3.6 2030.0 1404.4
3.6 351.9 137.7
3.6 182.5 74.4
3.6 188.6 79.6

6.9 2110.9 983.7
3.6 1865.6 787.6
0.3 522.8 122.2
0.3 522.8 122.2
.8 134.8 54.6
3.6 1525.5 586.6
.5 199.7 76.8
.8 97.6 35.8
.5 62.5 19.6
.9 139.7 43.9
.4 61.9 17.2
.4 69.7 16.3
.7 60.8 10.5
.1 40.8 4.2
9.9 772.9 32.0
3.3 26.5 0.5
3.3 27.1 1.0
6.9 440.6 104.8
6.9 772.9 241.7
6.9 893.2 299.4
808.3 0 0
808.3 2.7 2.1
808.3 870.3 14.0



Table 5
Comparison between parametric and neuro-genetic optimization.

Parameter Parametric
optimization

Neuro-genetic
optimization

Excess air (%) 20 18
HP turbine inlet steam pressure and

temperature (bar/�C)
290/600 290/600

IP turbine inlet steam pressure and
temperature (bar/�C)

61/620 62/620

LP turbine inlet steam pressure (bar) 3 3
Condenser pressure (bar) 0.103 0.103
Extraction pressure to LP FWH 1 (bar) 0.43 0.30
Extraction pressure to LP FWH 2 (bar) 1.26 1.05
Extraction pressure to LP FWH 3 (bar) 3.00 3.00
Extraction pressure to LP FWH 4 (bar) 6.62 6.10
Extraction pressure to de-aerator (bar) 12.00 11.00
Extraction pressure to HP FWH 1 (bar) 28.90 25.60
Extraction pressure to HP FWH 2 (bar) 62.50 62.00
Extraction pressure to HP FWH 3 (bar) 92.20 92.20
Plant energy efficiency (%) 39.5 39.6
Plant exergy efficiency (%) 36.1 36.2

Fig. 8. Variation of coal consumption with different samples.
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1.5% of energy input through the coal for the optimized power
plant configuration. Since exergy analysis gives more insights into
the process, the present study is extended to determine the effect
of coal composition on the thermodynamic performance of the
optimized power plant based on both energy and exergy.

Different coal samples considered in Table 2 are used to evalu-
ate the performance. The results of energy and exergy balance are
shown in Tables 6 and 7, respectively with cases representing the
values corresponding to respective coal samples. The energy losses
are calculated as the ratio of energy rejected to the energy content
of input fuel whereas the exergy losses are calculated as the ratio
of irreversibilities to the exergy content of the fuel. It is observed
that there is an increase of 1.2% points in plant energy efficiency
using coal with an ash content of 16% compared with the reference
coal with an ash content of 49% (dry-basis). The corresponding in-
crease in plant exergy efficiency is 3.3%.

The variation of fuel consumption with different coal samples is
shown in Fig. 8. A significant reduction of about 42% in coal con-
Table 6
Comparison of energy balance.

Components (%) Reference
high ash (HA)

Case-1 Case-2 Case-3 Case-4

Power (efficiency) 39.6 39.8 40.3 40.7 40.8
Heat rejected in cooling water 46.5 46.6 46.9 47.0 46.8
Heat rejected through stack 10.1 10.0 9.8 9.8 10.2
Heat rejected through

bottom ash
0.8 0.7 0.5 0.3 0.2

Other losses (by difference) 3.0 2.9 2.5 2.2 2.0

Table 7
Comparison of exergy balance.

Components (%) Reference
high ash (HA)

Case-1 Case-2 Case-3 Case-4

Power (efficiency) 36.2 36.6 37.7 38.7 39.5
Loss in combustor 33.1 32.5 31.0 29.4 28.3
Loss in steam generator

(excluding combustor)
16.8 16.9 17.4 17.9 18.3

Loss through stack 3.9 4.0 4.2 4.4 4.5
Loss in turbine 3.5 3.5 3.6 3.7 3.7
Loss in condenser and

cooling water
1.9 1.9 1.9 2.0 2.0

Loss in feed water heaters 1.0 1.0 1.0 1.0 1.1
Loss through bottom ash 0.5 0.4 0.3 0.2 0.1
Other losses (by difference) 3.1 3.2 2.9 2.7 2.5
sumption is observed using coal with an ash content of 16% (sam-
ple-4) compared to the reference coal that in turn results in a
reduction of auxiliary power consumption. The reduction of energy
loss through the bottom ash also contributes to the increase in
plant energy efficiency. However, exergy balance gives additional
insights into the process. There is a significant reduction in exergy
loss in the combustor with the decrease in ash content of coals
which is due to the increase in combustibles. However, the heat
transfer irreversibility in the steam generator increases for the
plant using relatively low ash coals compared to the reference
HA coal. This is due to the relatively higher flue gas temperature
using low ash coals (higher reaction temperature) compared to
the reference coal and hence higher temperature difference be-
tween the flue gas and the steam for the same excess air ratio
and steam parameters of the turbine cycle.
6. Conclusions

Thermodynamic optimization of power plant based on coupled
artificial neural network and genetic algorithm (neuro-genetic) is
found to be an efficient methodology compared to the routine
parametric optimization. Neuro-genetic optimization methodol-
ogy significantly reduces the computational effort without com-
promising the accuracy of the results along with the major
advantage of on-line optimization. Furthermore, the thermody-
namic analysis carried out to study the effect of coal composition
on the power plant performance shows a reduction of about 42%
in fuel consumption using coal with 16% ash compared with the
coal having 49% ash. The corresponding increase in plant energy
and exergy efficiencies are 1.2% and 3.3% points, respectively. It
is also observed that the exergy loss in the combustor may be a
suitable indicator to determine the effect of variation in coal com-
position on the power plant performance.
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