

Energy Storage

2nd lecture: Electrochemical Storage -Batteries

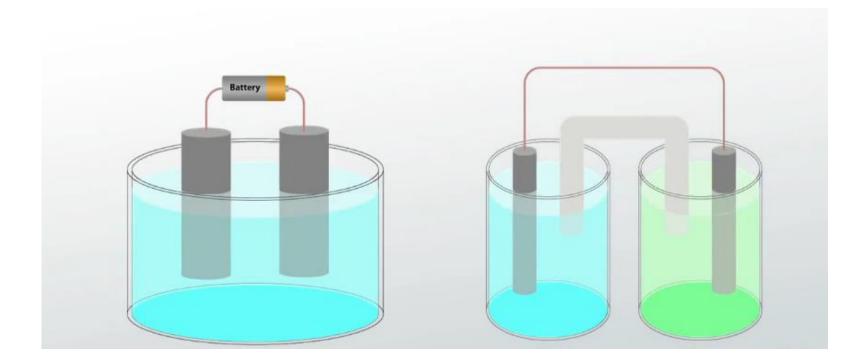
Electrochemical Storage

- Chemical Energy Storage:
- Electricity \rightarrow some storage material \rightarrow electricity
- The storage material can be a fuel.
- Electrochemical Storage: the " \rightarrow " parts are electrochemical reactions AND the storage material is not a fuel (In this way, Hydrogenbased energy storage is not electrochemical, but chemical, because the storage material is a fuel).

Battery Types

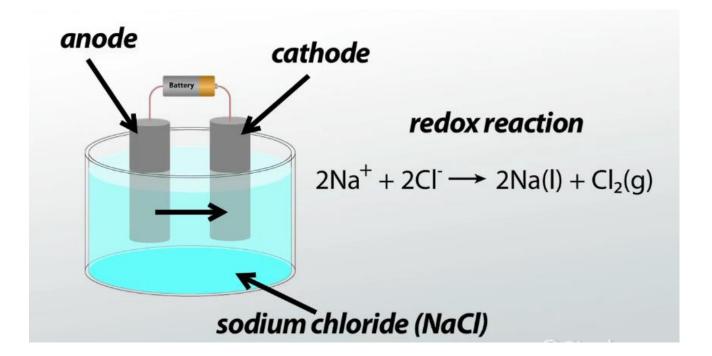
- Chargeable/reusable These are the real storing devices
- Non-reusable batteries, not real storage devices, can be used only once.

In English, both groups are batteries; in some languages, they have different names.

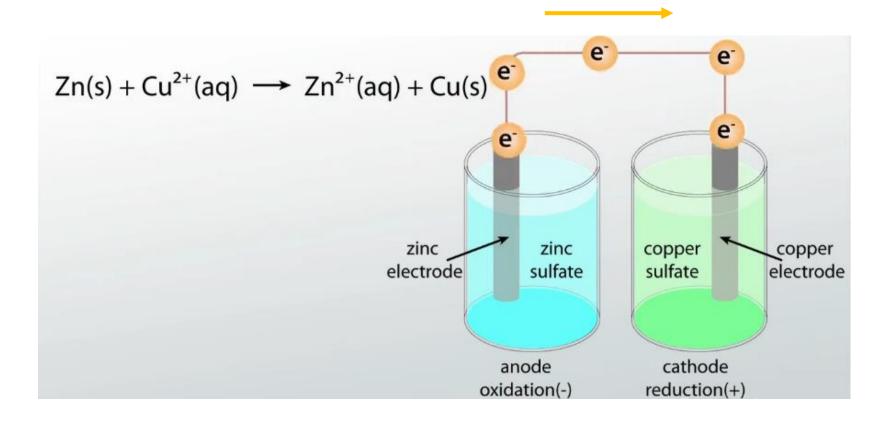

Battery Types

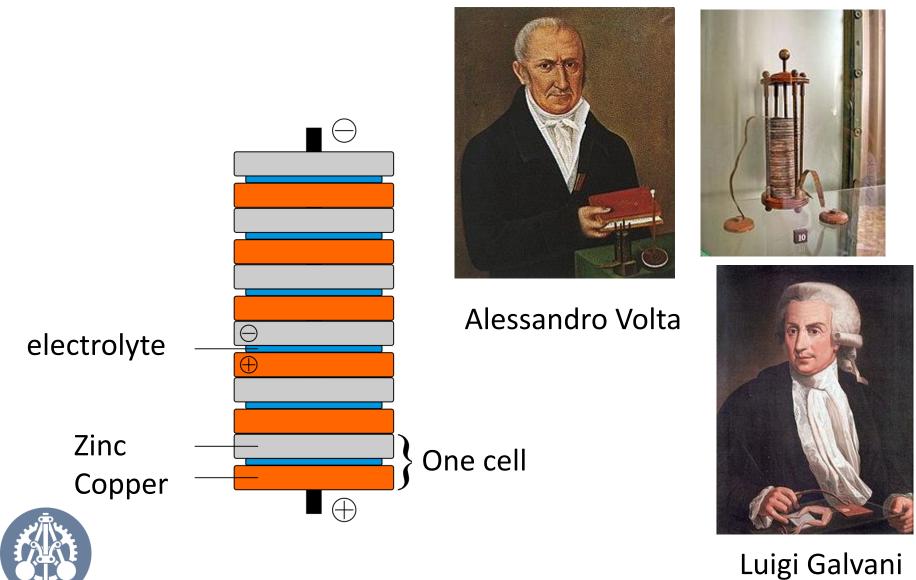
- Acidic lead batteries
- Nickel batteries
 - Nickel-Cadmium
 - Nickel-Metal Hydrid
- High temperature / molten electrode batteries
 - Sodium-Sulphur (NaS)
 - Sodium-Nickel Chloride (ZEBRA)
- Lithium-ion
- Flow/Redox

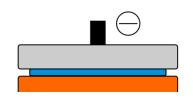
Elektrochemical cells


ElectroliticGalvanic For charge.....for discharge

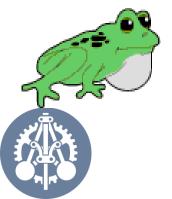
Képek:study.com


Electrolitic


Galvanic


Simple battery

Simple battery



'olta

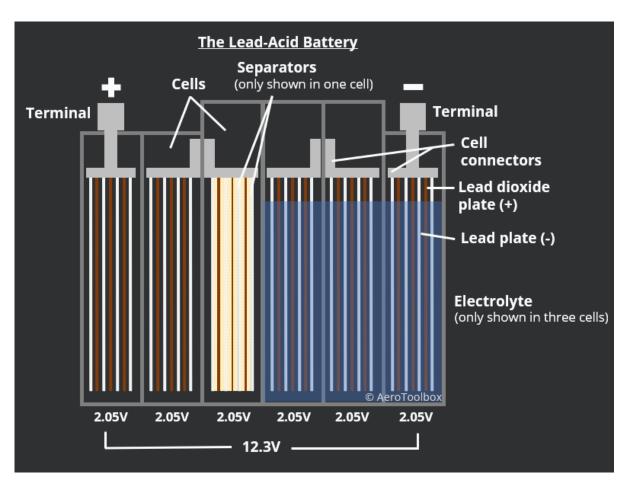
Luigi Galvani

Batteries

- Storage capacity is usually given is storable charges (Ah; Amper*hours), instead of energy (kJ, kWh), except for BIIIIIG batteries. It is not a fix value, depends on the load on the battery.
- For comparison, specific stored energy or specific power (kWh/kg, kW/kg) are given.

Single-use batteries

- Carbon/Zinc, most traditional, electrolyte is ammonium-chloride. Best in price! Nominal voltage/cell: 1,5 V.
- Mangane-dioxid/zinc with gel-like potassium-hydroxide electrolyte (alkali, not acidic!). More power than for Carbon-Zinc, but higher cost! 1,5 V/cell.
- Zinc/air with water as electrolyte. Zn+oxygen from air + water to (Zn(OH)₂). Mostly used as button-sized battery (35-600 mAh) , 1,4 V.
- Lithium-metal battery (mostly lithium/mangane dioxide); with lithium salt electrolyte in some organic solvent. Powerfull, long-life, high price, 3V. A version (Li-FeS₂) can have 2.5 longer lifetime, 1.5 V.
- Lithium-thionil-chloride (SOCl₂ LiAlCl₄ -NbCl₄), 3,5 V. For application which requires very low (mA or below) current; lifetime can be even 40 years.



And now, the real (rechargeable) batteries....

Acidic Lead battery

Has been in market for more than 150 years, known as traditional car-battery.

Inexpensive, can be charged/disch arged several times!

Acidic Lead battery

Problems – parasitic reactions, causes losses and/or permanent damages

- Gas production (hydrogen, oxygen), causes loss of water
- Corrosion: lead and its oxide can react with the electrolyte even in unloaded state
- Growth of Lead-oxide layer can separate the electrode and electrolyte
- Dissipative heat (general problems for all batteries)
- Cannot be discharged in 100%

Nickel-based batteries

- Nickel-cadmium
- Nickel-metal hydrides
- Alkalic electrolytes
- Cell voltage is smaller, than for acidic ones
- Better chemical stability, they can be charged/discharged several times
- Can be used in low temperature

Nickel-cadmium batteries

Problems

- For long use, unwanted chemical reactions cause contamination/recrystallization of electrodes.
- Can be charged/discharged easily, but simple measurement of voltage is not enough to monitor these processes.
- Not very sensitive for overcharging.
- Can be charged in any condition, not only in fully uncharged state.

Nickel-cadmium batteries

This type cannot be sold for the public since 2016 (USA, EU), except for medical purpose. In the EU, producers has to collect and recycle these batteries.

Nickel-hydrid batteries

Cadmium is replaced with some other metal. Negative: $Me(H)+OH^{-} \leftrightarrow Me+H_2O+e^{-}$ Positive: $2NiO(OH)+2H_2O+2e^{-} \leftrightarrow 2Ni(OH)_2+2OH^{-}$

Hydrogen forms on the negative side, but not as gas. Atoms can diffund to the metal. Therefore the metal has to be some compound, good for interstitial hydrogen storage, like AB5 (from nickel, cobalt. Mangane, aluminum, lantana, prazeidymium, neodymium) or AB2 ötvözetek (zirconium, vanadium, mangane. titane).

Example (AB5) LaNi_{3.55}Mn_{0.4}Al_{0.3}Co_{0.4}Fe_{0.35} One A (Li) and 5 others)!

Nickel-hydrid batteries

- Forlonger life, voltage has to be kept in the 0,85 V (fully discharged) and -1,42 V (fully charged) condition.
- Life-time (in cycle number) is smaller than for the one with cadmium.

Comparison

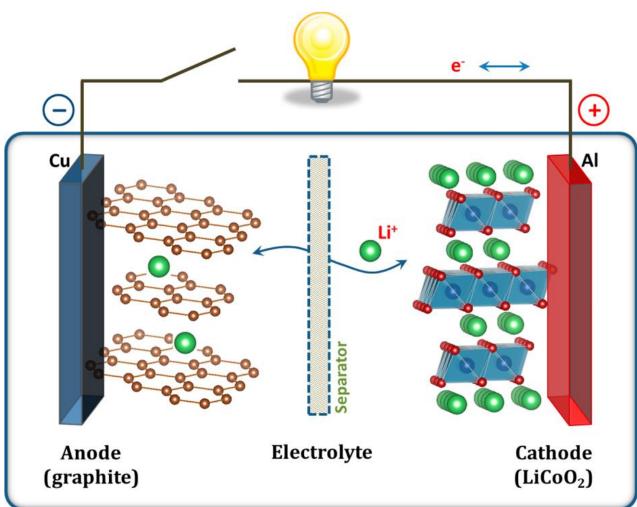
	Lead acid	Ni-Cadmium	Ni-hydrid
Work range	20-45 °C **	-50-70 ⁰ C-ig	-30-75 ⁰ C
Max. voltage.***	0,84-2,1 V****	1,2 V	1,2 V
Max. cycle number	20-1000*	2000	180-2000
capacity	Size-dependent	size-dependent (600 mAh, AA)	size-dependent (2500 mAh, AA)
Specific energy	25-40 Wh/kg	40-60 Wh/kg	60-120 Wh/kg
Specific power	180 W/kg	150 W/kg	250-1000 W/kg
Self-discharge on room temperature	3-20%/month	10-20%/month	20% (first day), later 10%/month
Storage efficiency	50-95%	70-90 %	66-92%
lifetime	5 year (33°C); 10 year (25°C)	Longer than lead- acid	<5 year
*depends on the level of discharge ** optimal value *** for a cell			

*depends on the level of discharge ****depends on the concentration

Lithium-ion batteries

Collective name for all batteries, containing Lithium electrode. Li(metal) are for single use, Li-ion and Li-polymer are for rechargeable application.

Names: lithium-ion, Li-ion or LIB (B, as battery)


Electrodes: metal ot metal-oxide doped with Li on one side (like Cobalt-Oxide+Li), Graphite on the other side.

Electrilyte: usually liquid, an organic solution of a Li-salt, like LiPF₆, LiBF₄ or LiClO₄ in ethylene-carbonate, dimethylcarbonate or diethyl carbonate solutions. Solid (ceramic) electrolytes are also exist.

Lithium-ion batteries

Types

Code	cathode	Anode	Cell-voltage (V)	Energy density (Wh/kg)
LCO	LiCoO ₂ ; layered oxyde	Graphite	3,7–3,9	140
LNO	LiNiO ₂ ; layered oxyde	Graphite	3,6	150
NCA	LiNi _{0,8} Co _{0,15} Al _{0,05} O ₂ ; layered oxyde	Graphite	3,65	130
NMC	LiNi _x Mn _y Co _{1-x-y} O ₂ ; layered oxyde	Graphite	3,8–4,0	170
LMO	LiMn ₂ O ₄ ; spinell	Graphite	4,0	120
LNM	LiNi _{0,5} Mn ₃ O ₄ ; spinell	Graphite	4,8	140
LFP	LiFePO ₄ ; olivin	Li ₄ Ti ₅ O ₁₂	2,3–2,5	100

	NMC	LMO	NCA	LFP	LTO
	•Generally good	•Low price	•High power	•Thermally stable	•Thermally
	 High power and 	(mangane is	and capacity	•Can endure	stable
	capacity	cheap)	•Can endure	several cycles	•Can endure
Advantage	 Thermally stable 	•Thermally	several cycles	•High power	several cycles
	•Can work on high	stable	 Long life (in 	•Low price	•Fast discharge
	voltage	•High power	time)		•Chemical
					stability
	 Legal problem in 	•Very low cycle	•Bad	•Low energy	•High price
	several countries	numbes	thermical	density	(titane)
	(patent-related)	 Low capacity 	stability in		•Low cell-
			fully charged		voltage
Disadvantag			states		•Low energy
e			 Storage 		density
			capacity is		
			bad in the		
			40–70 °C		
			range		

Overcharge

Copper dissolution

High temperature – thermal degradation Flammable gases

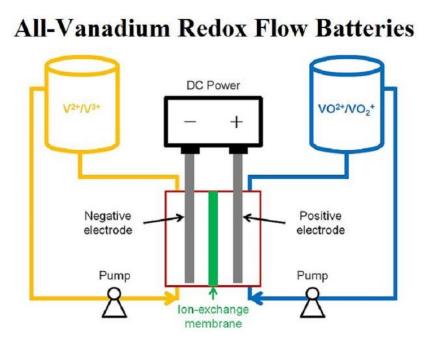
Size

- From very small, like AAA with capacity below 1 Ah.
- 55 mm diameter, 220 mm long rods, 40 Ah capacity.
- Same with a prism (220 mm*210 mm*11 mm)

Lifetime

Defined as the time or cycle number, where the storage capacity drops to the 80% of the initial value \rightarrow SECOND LIFE BATTERIES

Biggest problem


Redox flow batteries

Redox flow batteries

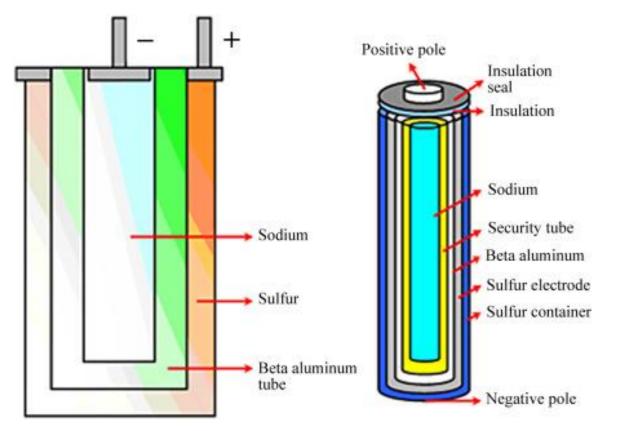
Vanadium Redox Flow Battery (VRB)

10 kW; 30 kWh

Two eletrolytes are separated by a membrane (like 2 M sulphuric acid, 1,5 M vanadium sulphate); electrodes are similar in both side (like graphite). Cell voltage: 1.4 V

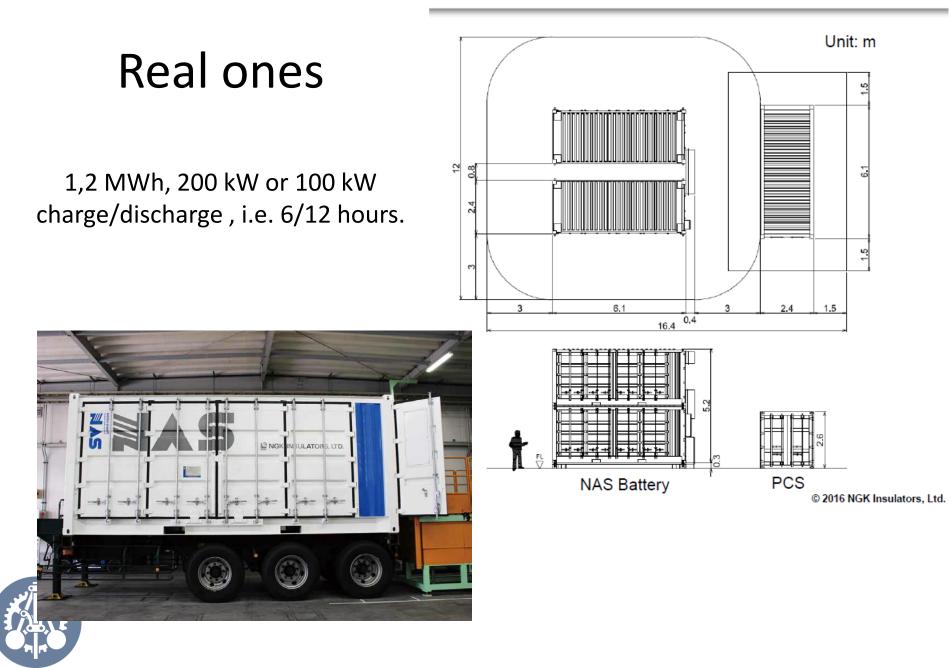
Problems

- It is like a small chemical factory!
- Vanadium-mining???? What????


Advantages

- Lifetime 20-40 year or 13,000-100,000 deep cycle without membrane replacement.
- From standby mode it can be ready in 0.001-0.02 s.
- Total discharge time is 4-5 h. Direction (charge/discharge) can b switched at any time.
- Can be fully discharged.
- Minimal self-discharge, in unconnected state it can store energy for decades.
- Can be left in fully discharged state for years.
- Easy to install, no emission, no fire or explosion, fully recyclable.

Sodium-Sulphur battery

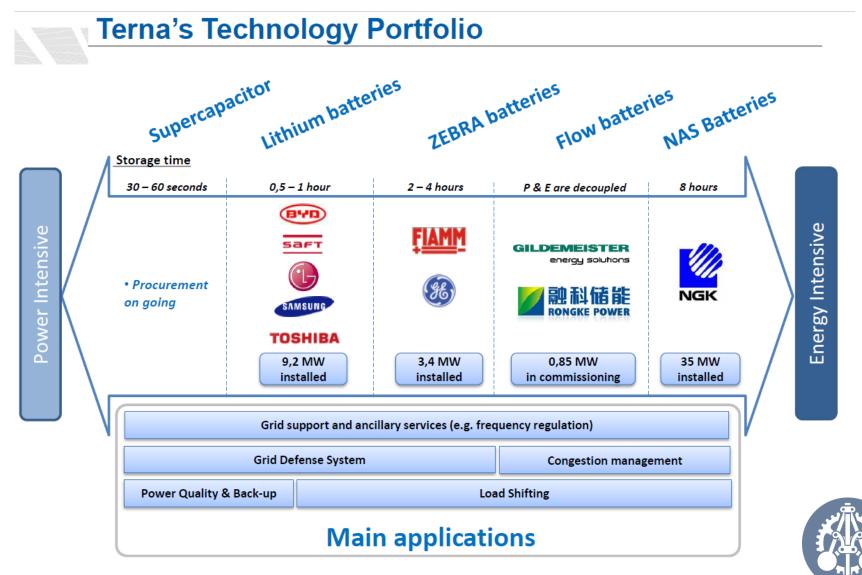


- Molten electrodes, solid electrolyte.
- Needs ≥300 °C, during charge/discharge it is provided by dissipation. 32 kW heating needed!
- Commercial version: rod, diam. 90 mm, length 520 mm, 1,2 kWh nominal capacity (per rod). 2 V nominal voltage (per rod).

Example of 800kW NAS Battery layout

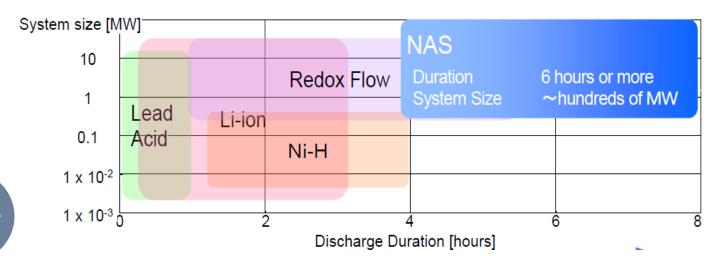
NaS (TERNA)

Battery Technology	NAS (Sodium/Sulfur)	
Rated Power	12 MW	
Gross Energy Capacity (discharged)	90 MWh	
Net Energy Capacity (discharged)	80 MWh	
Net Round-trip AC efficiency (*)	75%	
Storage time (from 0% to 100%SOC to rated power)	10 h	
Response time	12 MW/sec	
Operating battery temperature	305-350 °C	

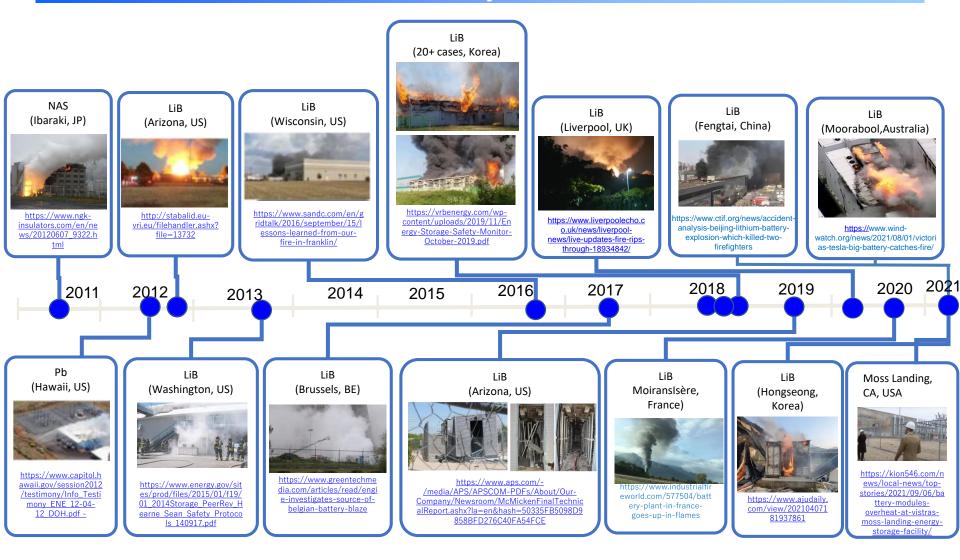

* Round-trip AC: related to a complete daily reference cycle

TERNA project (Italy)

Comparison


	Li-ion	Redox flow	NaS
Work range	0-45 °C*	10-40 ^o C (definitely not above 60 ^o C)	300-350 °C***
Max. voltage.***	2,5 -4,35 V/cella	1,15-1,55 V/cell	2 V/cell
Max. cycle number	400-1200	12000-14000	2500-4500 (usually one cycle/day)
capacity	-	-	-
Specific energy	100-300 Wh/kg	10-20 Wh/kg	100-200 Wh/kg
Specific power	250-350 W/kg	1-10 W/kg	1-50 W/kg
Self-discharge on room temperature	0,35% - 2,5% per month (depends on charge level)	1-2 day; "infinite"**	Caused by heat loss, 0-20%/day
Storage efficiency	80-95%	75-80 %	70-90%
lifetime	2-5 year	20-30 year	10-25 year

* works, but cannot be charged; ** no pump, no self-discharge, but response time will be very slow *** internal temperature (external is not specified)

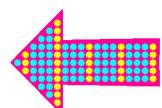


Application

		Power Type Battery		Energy Type Batter	Energy Type Battery	
		Lead-acid	Li-ion	Redox flow	NaS	
Size		medium	medium	Small or big	big	
compactness		big	medium	big	small	
lifetime		long	medium	long	long	
price	Ár/kW	high	Alacsony	High	medium	
	Ár/kWh	medium	high	high	low	

Grid scale battery fires since 2011

Summary


- Needs inverter for most application (true for all batteries).
- Usually big self-discharge (loss of stored energy in unloaded condition), therefore they are not good for long storage (like seasonal one) (except redox-flow, but the availability of vanadium is low).

Special batteries for special need!

Speciális feladatra speciális akkumulátor

Thanks for your attention

